
BGZF block-level encryption for VCF, BCF, BAM
(and anything BGZF compressed)

petr.danecek@sanger.ac.uk
2016-11-28

1 / 6

BGZF

Compression format compatible with GZIP
• used for VCF, BCF, BAM compression
• indexable with tabix, .tbi, and .csi

BGZF file typically consists of many compressed blocks
The size of compressed blocks (BLEN) is limited to 216 bytes

31 139 8 4 0 0 0 0

BGZF header, extension of GZIP, RFC 1952

GZIP format ID

Compression method (gzip=8)

Extra field

Modification time

0 255

Extra flags

Operating system (unknown=255)

0 6

Length of the extra field

B C 0 2 BLEN

BC field, its length and value

2 / 6

BGZF encryption via AES-256

Advanced Encryption Standard
• symmetric key algorithm (the same key is used for encryption and decryption)
• used by governments, militaries, banks
• no known practical attacks

VCF
BGZF header

BGZF header

BGZF header

Compressed
data

Compressed
data

Compressed
data

BGZF
compression

eBGZF header

eBGZF header

eBGZF header

Compressed
and

encrypted
data

In-place
AES encryption

Compressed
and

encrypted
data

Compressed
and

encrypted
data

SHA-2 key

3 / 6

AES-encrypted BGZF

Encrypted blocks use EC or DC tag instead of BC
• EC blocks were in-place encrypted using AES-256 after the compression
• DC block comes first in the encrypted file and contains SHA-2 hash digest of the
key used for encryption and the initialization key

31 139 8 4 0 0 0 0 0 255 0 6 E C 0 2 BLEN

31 139 8 4 0 0 0 0 0 255 0 6 D C 0 2 BLEN a 7 . . . 6 1

SHA-2 digest (64B)

. . . .

Initialization vector (16B)

. . .

First block

All other encrypted blocks

CTR-like AES mode
• each BGZF block is encoded with a modified initialization vector
• XOR the first 8 bytes with the file offset (little endian)

4 / 6

Proof of concept implementation in HTSlib
Transparent encryption and decryption

• openssl-aware HTSlib is required (and nothing else)
• for example, no code changes were required in BCFtools

Library of keys
• plain text file secured only by standard unix permissions
• location stored in the environment variable HTS_KEYS

cat hts-keys.txt
[1] Public SHA256 digest of the key [2] Private symmetric encryption key
d3f29f62f78df[....]be8f35590516e65ac3 63f89d73e188[...]6c0664d6a3427d82534
0a731c7703376[....]c7f578d9bea9ef0ac2 1820f1666f2d[...]98ecd75a32965f17e0a
7ae24d96d386a[....]04bf0e5cd9a08183d2 484a7bbb8eb1[...]21b5ebfa0a09e34847a

Encryption
• controlled by the environment variable HTS_ENC

export HTS_KEYS=hts-keys.txt

plain compression
bgzip -c in.vcf > plain.vcf.gz

encrypted output
HTS_ENC=0a731c7703376[....]c7f578d9bea9ef0ac2 bgzip -c in.vcf > enc.vcf.gz

encrypted index
HTS_ENC=0a731c7703376[....]c7f578d9bea9ef0ac2 tabix enc.vcf.gz

querying encrypted file with tabix
tabix enc.vcf.gz 1:100000-100000

5 / 6

Practical aspects

Performance
• the cost is negligible, the following tests on a 248M BCF:

bcftools-1.3 view test.bcf -Ob -o normal.bcf # 94.98user 2.18system 1:37.29elapsed
bcftools-ssl view test.bcf -Ob -o enc.bcf # 97.03user 1.68system 1:38.73elapsed

Create random keys
Random key and the public SHA-256 hash
KEY=‘dd if=/dev/urandom bs=1 count=32 2>/dev/null | xxd -ps -c32‘
HASH=‘echo $KEY | openssl sha256 | sed ’s,^.*= ,,’‘
echo -e "$HASH\t$KEY" > hts-keys.txt

The (trimmed) result:
cat hts-keys.txt
e047893a7f886[....]e54a9cd24f0b430267 beb91c3fa95a[...]04c3052041e02419fba

Download and test the code
git clone --branch=crypto https://github.com/pd3/htslib.git
cd htslib
autoheader
autoconf
./configure --enable-openssl
make
./test/test.pl

the only modification in bcftools is compilation with openssl
cd ..
git clone --branch=crypto https://github.com/pd3/bcftools.git
cd bcftools
make

6 / 6

