BGZF block-level encryption for VCF, BCF, BAM
(and anything BGZF compressed)

petr.danecek@sanger.ac.uk
2016-11-28

BGZF

Compression format compatible with GZIP
¢ used for VCF, BCF, BAM compression
¢ indexable with tabix, .tbi, and .csi
BGZF file typically consists of many compressed blocks

The size of compressed blocks (BLEN) is limited to 26 bytes

BGZF header, extension of GZIP, RFC 1952

Compression method (gzip=8) BC field, its length and value

| R R

[31 139] 8] a]o o o ofofssjo 68 cfo 2]sLen |

Modification time T Length of the extra field
Extra field Operating system (unknown=255)

GZIP format ID Extra flags

BGZF encryption via AES-256

Advanced Encryption Standard

¢ symmetric key algorithm (the same key is used for encryption and decryption)

e used by governments, militaries, banks

¢ no known practical attacks

VCF

BGZF
compression

e

BGZF header

Compressed
ata

BGZF header

Compressed
tfata

BGZF header

Compressed
data

PRGN

In-place
AES encryption

 —

eBGZF header

SHA-2 key

Compressed

encrypted
data

eBGZF header

Compressed
and

encrypted
data

eBGZF header

Compressed
and

encrypted
data

PRGN

6

AES-encrypted BGZF

Encrypted blocks use EC or DC tag instead of BC

¢ EC blocks were in-place encrypted using AES-256 after the compression

¢ DC block comes first in the encrypted file and contains SHA-2 hash digest of the
key used for encryption and the initialization key

First block

[31 23] 8JaJo o o ofofessJo 6]po c[o 2] men]a 7.‘..‘..‘.6 1]

f f

SHA-2 digest (64B) Initialization vector (16B)

All other encrypted blocks

[31139]8]aJo o o oJofessJo 6]e c[o 2] sen]

CTR-like AES mode

e each BGZF block is encoded with a modified initialization vector
¢ XOR the first 8 bytes with the file offset (little endian)

6

Proof of concept implementation in HTSlib

Transparent encryption and decryption

¢ openssl-aware HTSIib is required (and nothing else)
¢ for example, no code changes were required in BCFtools

Library of keys

e plain text file secured only by standard unix permissions
¢ location stored in the environment variable HTS_KEYS

cat hts-keys.txt

[1] Public SHA256 digest of the key [2] Private symmetric encryption key
d3f29£62f78df[....]be8£f35590516e65ac3 63£89d73e188[. . .]6c0664d6a3427d82534
0a731c7703376[. ...]1c7£5678d9bea9efOac?2 1820£1666£2d[...]198ecd75a32965f17e0a
7ae24d96d386al. . ..]104bf0e5cd9a08183d2 484a7bbb8ebl[...]21b5ebfa0a09e34847a

Encryption
e controlled by the environment variable HTS_ENC

export HTS_KEYS=hts-keys.txt

plain compression
bgzip -c in.vcf > plain.vcf.gz

encrypted output
HTS_ENC=0a731c7703376[....]c7£678d9beadefOac2 bgzip -c in.vcf > enc.vcf.gz

encrypted index
HTS_ENC=0a731c7703376[....]1c7£f578d9bea9ef0ac2 tabix enc.vcf.gz

querying encrypted file with tabix
tabix enc.vcf.gz 1:100000-100000

6

Practical aspects

Performance

¢ the cost is negligible, the following tests on a 248M BCF:

bcftools-1.3 view test.bcf -0b -o normal.bcf # 94.98user 2.18system 1:37.29elapsed
bcftools-ssl view test.bcf -0b -o enc.bcf # 97.03user 1.68system 1:38.73elapsed

Create random keys

Random key and the public SHA-256 hash

KEY=‘dd if=/dev/urandom bs=1 count=32 2>/dev/nu11 | xxd -ps -c32¢
HASH=‘echo $KEY | openssl sha256 | sed ’s,”.x= ,,

echo -e "$HASH\t$KEY" > hts-keys.txt

The (trimmed) result:
cat hts-keys.txt
e047893a7£8861[. . ..]e54a9cd24f0b430267 beb91c3fadbal...]04c3052041e02419fba

Download and test the code

git clone --branch=crypto https://github.com/pd3/htslib.git
cd htslib

autoheader

autoconf

./configure --enable-openssl

make

./test/test.pl

the only modification in bcftools is compilation with openssl
cd ..

git clone --branch=crypto https://github.com/pd3/bcftools.git
cd bcftools

make

