CRAM format specification (version 3.0)

samtools-develQlists.sourceforge.net

4 Feb 2021

The master version of this document can be found at https://github.com/samtools/hts-specs.
This printing is version c467e¢20 from that repository, last modified on the date shown above.

license: Apache 2.0

1 Overview

This specification describes the CRAM 3.0 format.
CRAM has the following major objectives:

1. Significantly better lossless compression than BAM

[\

. Full compatibility with BAM
3. Effortless transition to CRAM from using BAM files

W~

. Support for controlled loss of BAM data

The first three objectives allow users to take immediate advantage of the CRAM format while offering a smooth
transition path from using BAM files. The fourth objective supports the exploration of different lossy compres-
sion strategies and provides a framework in which to effect these choices. Please note that the CRAM format
does not impose any rules about what data should or should not be preserved. Instead, CRAM supports a wide
range of lossless and lossy data preservation strategies enabling users to choose which data should be preserved.

Data in CRAM is stored either as CRAM records or using one of the general purpose compressors (gzip, bzip2).
CRAM records are compressed using a number of different encoding strategies. For example, bases are reference
compressed by encoding base differences rather than storing the bases themselves.!

2 Data types

CRAM specification uses logical data types and storage data types; logical data types are written as words (e.g.
int) while physical data types are written using single letters (e.g. i). The difference between the two is that
storage data types define how logical data types are stored in CRAM. Data in CRAM is stored either as bits
or bytes. Writing values as bits and bytes is described in detail below.

2.1 Logical data types

Byte
Signed byte (8 bits).

IMarkus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan Birney, Efficient storage of high throughput
DNA sequencing data using reference-based compression, Genome Res. 2011 21: 734-740; doi:10.1101/gr.114819.110;
PMID:21245279.

https://github.com/samtools/hts-specs
http://dx.doi.org/doi:10.1101/gr.114819.110

Integer
Signed 32-bit integer.

Long
Signed 64-bit integer.

Array
An array of any logical data type: array<type>

2.2 Writing bits to a bit stream
A Dbit stream consists of a sequence of 1s and 0s. The bits are written most significant bit first where new bits

are stacked to the right and full bytes on the left are written out. In a bit stream the last byte will be incomplete
if less than 8 bits have been written to it. In this case the bits in the last byte are shifted to the left.

Example of writing to bit stream

Let’s consider the following example. The table below shows a sequence of write operations:

Operation order | Buffer state before | Written bits | Buffer state after | Issued bytes
1 0x0 1 0x1 -

2 0x1 0 0x2 -

3 0x2 11 0xB -

4 0xB 0000 0111 0x7 0xBO0

After flushing the above bit stream the following bytes are written: 0xB0 0x70. Please note that the last byte
was 0x7 before shifting to the left and became 0x70 after that:

> echo "obase=16; ibase=2; 00000111" | bc
7
> echo "obase=16; ibase=2; 01110000" | bc

70
And the whole bit sequence:

> echo "obase=2; ibase=16; B070" | bc

1011000001110000

When reading the bits from the bit sequence it must be known that only 12 bits are meaningful and the bit
stream should not be read after that.

Note on writing to bit stream

When writing to a bit stream both the value and the number of bits in the value must be known. This is because
programming languages normally operate with bytes (8 bits) and to specify which bits are to be written requires
a bit-holder, for example an integer, and the number of bits in it. Equally, when reading a value from a bit
stream the number of bits must be known in advance. In case of prefix codes (e.g. Huffman) all possible bit
combinations are either known in advance or it is possible to calculate how many bits will follow based on the
first few bits. Alternatively, two codes can be combined, where the first contains the number of bits to read.

2.3 Writing bytes to a byte stream

The interpretation of byte stream is straightforward. CRAM uses little endianness for bytes when applicable
and defines the following storage data types:

Boolean (bool)
Boolean is written as 1-byte with 0x0 being ‘false’ and 0x1 being ‘true’.

Integer (int32)
Signed 32-bit integer, written as 4 bytes in little-endian byte order.

Long (int64)
Signed 64-bit integer, written as 8 bytes in little-endian byte order.

ITF-8 integer (itf8)
This is an alternative way to write an integer value. The idea is similar to UTF-8 encoding and therefore
this encoding is called ITF-8 (Integer Transformation Format - 8 bit).

The most significant bits of the first byte have special meaning and are called ‘prefix’. These are 0 to 4
true bits followed by a 0. The number of 1’s denote the number of bytes to follow. To accommodate 32
bits such representation requires 5 bytes with only 4 lower bits used in the last byte 5.

LTF-8 long (1tf8)
See ITF-8 for more details. The only difference between ITF-8 and LTF-8 is the number of bytes used to
encode a single value. To do so 64 bits are required and this can be done with 9 byte at most with the
first byte consisting of just 1s or OxFF value.

Array (array<type>)
A variable sized array with an explicitly written dimension. Array length is written first as integer (itf8),
followed by the elements of the array.

Implicit or fixed-size arrays are also used, written as typel[1 or type[4] (for example). These have no
explicit dimension included in the file format and instead rely on the specification itself to document the
array size.

Encoding
Encoding is a data type that specifies how data series have been compressed. Encodings are defined as
encoding<type> where the type is a logical data type as opposed to a storage data type.

An encoding is written as follows. The first integer (itf8) denotes the codec id and the second integer
(itf8) the number of bytes in the following encoding-specific values.

Subexponential encoding example:

Value | Type | Name
0x7 itf8 codec id

0x2 itf8 number of bytes to follow
0x0 itf8 offset
0x1 itf8 K parameter

The first byte “0x7” is the codec id.

The next byte “0x2” denotes the length of the bytes to follow (2).

The subexponential encoding has 2 parameters: integer (itf8) offset and integer (itf8) K.
offset = 0x0 = 0

K=0l=1

Map
A map is a collection of keys and associated values. A map with N keys is written as follows:

’ size in bytes \ N \ key 1 \ value 1 \ key ... | value ... | key N \ value N ‘

Both the size in bytes and the number of keys are written as integer (itf8). Keys and values are written
according to their data types and are specific to each map.

String
A string is represented as byte arrays using UTF-8 format. Read names, reference sequence names and
tag values with type ‘Z’ are stored as UTF-8.

3 Encodings

Encoding is a data structure that captures information about compression details of a data series that are
required to uncompress it. This could be a set of constants required to initialize a specific decompression
algorithm or statistical properties of a data series or, in case of data series being stored in an external block,
the block content id.

Encoding notation is defined as the keyword ‘encoding’ followed by its data type in angular brackets, for example
‘encoding<byte>’ stands for an encoding that operates on a data series of data type ‘byte’.

Encodings may have parameters of different data types, for example the EXTERNAL encoding has only one
parameter, integer id of the external block. The following encodings are defined:

Codec ID | Parameters Comment
NULL none series not preserved
EXTERNAL 1 int block content id the block content identifier used to
associate external data blocks with
data series
Deprecated (GOLOMB) 2 int offset, int M Golomb coding
HUFFMAN 3 array<int>, array<int> coding with int/byte values
BYTE ARRAY_ LEN 4 encoding<int> array length, coding of byte arrays with array
encoding<byte> bytes length
BYTE ARRAY_ STOP 5 byte stop, int external block coding of byte arrays with a stop
content id value
BETA 6 int offset, int number of bits binary coding
SUBEXP 7 int offset, int K subexponential coding
Deprecated (GOLOMB_RICE) | 8 int offset, int logom Golomb-Rice coding
GAMMA 9 int offset Elias gamma coding

See section 13 for more detailed descriptions of all the above coding algorithms and their parameters.

4 Checksums

The checksumming is used to ensure data integrity. The following checksumming algorithms are used in CRAM.

4.1 CRC32

This is a cyclic redundancy checksum 32-bit long with the polynomial 0x04C11DB7. Please refer to ITU-T
V.42 for more details. The value of the CRC32 hash function is written as an integer.

4.2 CRC32 sum

CRC32 sum is a combination of CRC32 values by summing up all individual CRC32 values modulo 232.

5 File structure

The overall CRAM file structure is described in this section. Please refer to other sections of this document for
more detailed information.

A CRAM file consists of a fixed length file definition, followed by a CRAM header container, then one or more
data containers, and finally a special end-of-file container.

Data
Container

CRAM EOF
Container

File
definition

CRAM Header
Container

Data
Container

Figure 1: A CRAM file consists of a file definition, followed by a header container, then other containers.

Containers consist of one or more blocks. The first container, called the CRAM header container, is used to
store a textual header as described in the SAM specification (see the section 7.1).

http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-V.42
http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-V.42

File CRAM Header Data Data CRAM EOF
definition Container Container Container Container
Block 1: Optional Block 2:

CRAM Header
(optionally compressed)

nul padding bytes
(uncompressed)

Figure 2: The the first container holds the CRAM header text.

Each container starts with a container header structure followed by one or more blocks. The first block in each
container is the compression header block giving details of how to decode data in subsequent blocks. Each block
starts with a block header structure followed by the block data.

File CRAM Header Data Data CRAM EOF
definition Container Container Container Container
Container Compression
Header structure Header Block el 1l (el eret 1t
Block Header Block data
structure

Figure 3: Containers as a series of blocks

The blocks after the compression header are organised logically into slices. One slice may contain, for example,
a contiguous region of alignment data. Slices begin with a slice header block and are followed by one or more
data blocks. It is these data blocks which hold the primary bulk of CRAM data. The data blocks are further
subdivided into a core data block and one or more external data blocks.

File CRAM Header Data Data CRAM EOF
definition Container Container Container Container
Container Compression
Header structure Header Block Il s IELals Ll
Slice 1 Slice N
Slice Header Core Data External External
Block Block Data Block 1 Data Block M

Figure 4: Slices formed from a series of concatenated blocks

6 File definition

Each CRAM file starts with a fixed length (26 bytes) definition with the following fields:

Data type Name Value
byte[4] format magic number | CRAM (0x43 0x52 0x41 0x4d)
unsigned byte | major format number | 3 (0x3)
unsigned byte | minor format number | 0 (0x0)

byte[20]

file id

CRAM file identifier (e.g. file name or SHA1 checksum)

Valid CRAM magjor.minor version numbers are as follows:

1.0 The original public CRAM release.

2.0 The first CRAM release implemented in both Java and C; tidied up implementation vs specification
differences in 1.0.

2.1 Gained end of file markers; compatible with 2.0.

8.0 Additional compression methods; header and data checksums; improvements for unsorted data.

7 Container header structure

The file definition is followed by one or more containers with the following header structure where the container

content is stored in the ‘blocks’ field:

Data type | Name Value

int32 length the sum of the lengths of all blocks in this container
(headers and data); equal to the total byte length of the
container minus the byte length of this header structure

itf8 reference sequence id reference sequence identifier or
-1 for unmapped reads
-2 for multiple reference sequences.
All slices in this container must have a reference sequence
id matching this value.

itf8 starting position on the the alignment start position or

reference 0 if the container is multiple-reference or contains

unmapped unplaced reads

itf8 alignment span the length of the alignment or
0 if the container is multiple-reference or contains
unmapped unplaced reads

itf8 number of records number of records in the container

1t£8 record counter 1-based sequential index of records in the file/stream.

1t£8 bases number of read bases

itf8 number of blocks the total number of blocks in this container

array<itf8> | landmarks the locations of slices in this container as byte offsets from
the end of this container header, used for random access
indexing. The landmark count must equal the slice count.
Since the block before the first slice is the compression
header, landmarks[0] is equal to the byte length of the
compression header.

int cre32 CRC32 hash of the all the preceding bytes in the container.

byte[| blocks The blocks contained within the container.

7.1 CRAM header container

The first container in a CRAM file contains a textual header in a single block, optionally gzip compressed. This
text header currently matches the SAM header specification. Only gzip is allowed as compression method for
this block. The CRAM header container does not include a compression header block.

It is recommended to reserve 50% more space in the CRAM header container than is required for the SAM
header text by optionally padding the container with a second raw block consisting of all zeroes. This can
be used to subsequently expand the header container in place, such as when updating @SQ records, while
preserving the absolute offsets of all subsequent containers.

8 Block structure

Containers consist of one or more blocks. Block compression is applied independently and in addition to any
encodings used to compress data within the block. The block have the following header structure with the data
stored in the ‘block data’ field:

Data type | Name Value
byte method the block compression method:
0: raw (none)*
1: gzip
2: bzip2
3: Izma
4: rans
byte block content type id the block content type identifier
itf8 block content id the block content identifier used to associate external data
blocks with data series
itf8 size in bytes* size of the block data after applying block compression
itf8 raw size in bytes* size of the block data before applying block compression
byte] | block data the data stored in the block:
e bit stream of CRAM records (core data block)
e byte stream (external data block)
e additional fields (header blocks)
byte[4] CRC32 CRC32 hash value for all preceding bytes in the block

* Note on raw method: both compressed and raw sizes must be set to the same value.

8.1 Block content types

CRAM has the following block content types:

Block content type Block Name Contents
content
type id
FILE HEADER 0 CRAM header block CRAM header
COMPRESSION HEADER 1 Compression header block | See specific section
SLICE HEADER? 2 Slice header block See specific section
3 reserved
EXTERNAL DATA 4 external data block data produced by
external encodings
CORE_DATA 5 core data block bit stream of all

encodings except for
external encodings

& Formerly MAPPED SLICE HEADER. Now used by all slice headers regardless of mapping status.

8.2 Block content id

Block content id is used to distinguish between external blocks in the same slice. Each external encoding has
an id parameter which must be one of the external block content ids. For external blocks the content id is a
positive integer. For all other blocks content id should be 0. Consequently, all external encodings must not use
content id less than 1.

Data blocks

Data is stored in data blocks. There are two types of data blocks: core data blocks and external data blocks.The
difference between core and external data blocks is that core data blocks consist of data series that are compressed
using bit encodings while the external data blocks are byte compressed. One core data block and any number
of external data blocks are associated with each slice.

Writing to and reading from core and external data blocks is organised through CRAM records. Each data
series is associated with an encoding. In case of external encodings the block content id is used to identify the
block where the data series is stored. Please note that external blocks can have multiple data series associated
with them; in this case the values from these data series will be interleaved.

8.3 CRAM header block

The SAM header is stored in a single block within the first container.
The following constraints apply to the SAM header:

e The SQ:MD5 checksum is required unless the reference sequence has been embedded into the file.

8.4 Compression header block

The compression header block consists of 3 parts: preservation map, data series encoding map and tag encoding
map.

Preservation map

The preservation map contains information about which data was preserved in the CRAM file. It is stored as
a map with byte[2] keys:

Key | Value data type | Name Value

RN bool read names included true if read names are preserved for all reads

AP bool AP data series delta true if AP data series is delta, false otherwise

RR bool reference required true if reference sequence is required to restore
the data completely

SM | byte[5] substitution matrix substitution matrix

TD array<byte> tag ids dictionary a list of lists of tag ids, see tag encoding section

The boolean values are optional, defaulting to true when absent, although it is recommended to explicitly set
them. SM and TD are mandatory.

Data series encodings

Each data series has an encoding. These encoding are stored in a map with byte[2] keys and are decoded in
approximately this order?:

2The precise order is defined in section 10.

Key | Value data type | Name Value
BF encoding<int> BAM bit flags see separate section
CF encoding<int> CRAM bit flags see specific section
RI encoding<int> reference id record reference id from the SAM file header
RL encoding<int> read lengths read lengths
AP encoding<int> in-seq positions if AP-Delta = true: 0-based alignment start
delta from the AP value in the previous record.
Note this delta may be negative, for example
when switching references in a multi-reference
slice. When the record is the first in the slice, the
previous position used is the slice alignment-start
field (hence the first delta should be zero for
single-reference slices, or the AP value itself for
multi-reference slices).
if AP-Delta = false: encodes the alignment start
position directly
RG encoding<int> read groups read groups. Special value ‘-1’ stands for no
group.
RN? | encoding<byte[|> | read names read names
MF encoding<int> next mate bit flags see specific section
NS encoding<int> next fragment reference sequence ids for the next fragment
reference sequence id
NP encoding<int> next mate alignment alignment positions for the next fragment
start
TS encoding<int> template size template sizes
NF encoding<int> distance to next number of records to the next fragment”
fragment
TL® | encoding<int> tag ids list of tag ids, see tag encoding section
FN encoding<int> number of read number of read features in each record
features
FC encoding<byte> read features codes see separate section
FP encoding<int> in-read positions positions of the read features
DL encoding<int> deletion lengths base-pair deletion lengths
BB | encoding<byte| |> | stretches of bases bases
QQ | encoding<byte[|> | stretches of quality quality scores
scores
BS encoding<byte> base substitution base substitution codes
codes
IN encoding<byte| |> | insertion inserted bases
RS encoding<int> reference skip length number of skipped bases for the ‘N’ read feature
PD encoding<int> padding number of padded bases
HC encoding<int> hard clip number of hard clipped bases
SC encoding<byte[|> | soft clip soft clipped bases
MQ | encoding<int> mapping qualities mapping quality scores
BA encoding<byte> bases bases
QS encoding<byte> quality scores quality scores

2 Note RN this is decoded after MF if the record is detached from the mate and we are attempting to

auto-generate read names.

b The count is reset for each slice so NF can only refer to a record later within this slice.
¢ TL is followed by decoding the tag values themselves, in order of appearance in the tag dictionary.

Tag encodings

The tag dictionary (TD) describes the unique combinations of tag id / type that occur on each alignment record.
For example if we search the id / types present in each record and find only two combinations — X1:i BC:Z

SA:Z: and X1:i: BC:Z — then we have two dictionary entries in the TD map.

Let L; = {Ti0,Ts1, ..., T} be a list of all tag ids for a record R;, where ¢ is the sequential record index and
T;; denotes j-th tag id in the record. The list of unique L; is stored as the TD value in the preservation map.
Maintaining the order is not a requirement for encoders (hence “combinations”), but it is permissible and thus
different permutations, each encoded with their own elements in TD, should be supported by the decoder. Each
L; element in TD is assigned a sequential integer number starting with 0. These integer numbers are referred
to by the TL data series. Using TD, an integer from the TL data series can be mapped back into a list of tag
ids. Thus per alignment record we only need to store tag values and not their ids and types.

The TD is written as a byte array consisting of L, values separated with \0. Each L; value is written as a
concatenation of 3 byte T;; elements: tag id followed by BAM tag type code (one of A, ¢, C, s, S,i, I, f, F, Z, H
or B, as described in the SAM specification). For example the TD for tag lists X1:i BC:Z SA:Z and X1:i BC:Z
may be encoded as X1ICBCZSAZ\0X1CBCZ\0, with X1C indicating a 1 byte unsigned value for tag X1.

Tag values

The encodings used for different tags are stored in a map. The key is 3 bytes formed from the BAM tag id
and type code, matching the TD dictionary described above. Unlike the Data Series Encoding Map, the key is
stored in the map as an ITF8 encoded integer, constructed using (charl << 16) + (char2 << 8) + type. For
example, the 3-byte representation of OQ:Z is {0x4F, 0x51, 0x5A} and these bytes are intepreted as the integer
key 0x004F515A, leading to an ITF8 byte stream {0xE0, 0x4F, 0x51, 0x5A}.

Key Value data type | Name Value
TAG ID 1:TAG TYPE 1 | encoding<byte[|> | read tag 1 | tag values (names and types are
available in the data series code)

TAG ID N:TAG TYPE N | encoding<byte[|> | read tag N

Note that tag values are encoded as array of bytes. The routines to convert tag values into byte array and back
are the same as in BAM with the exception of value type being captured in the tag key rather in the value.
Hence consuming 1 byte for types ‘C’ and ‘c’, 2 bytes for types ‘S’ and ‘s’, 4 bytes for types ‘I’, ‘i’ and ‘f’, and
a variable number of bytes for types ‘H’, ‘Z’ and ‘B’.

8.5 Slice header block

The slice header block is never compressed (block method=raw). For reference mapped reads the slice header
also defines the reference sequence context of the data blocks associated with the slice. Mapped reads can be
stored along with placed unmapped? reads on the same reference within the same slice.

Slices with the Multiple Reference flag (-2) set as the sequence ID in the header may contain reads mapped to
multiple external references, including unmapped?® reads (placed on these references or unplaced), but multiple
embedded references cannot be combined in this way. When multiple references are used, the RI data series
will be used to determine the reference sequence ID for each record. This data series is not present when only
a single reference is used within a slice.

The Unmapped (-1) sequence ID in the header is for slices containing only unplaced unmapped?® reads.

A slice containing data that does not use the external reference in any sequence may set the reference MD5
sum to zero. This can happen because the data is unmapped or the sequence has been stored verbatim instead
of via reference-differencing. This latter scenario is recommended for unsorted or non-coordinate-sorted data.

The slice header block contains the following fields.

3Unmapped reads can be placed or unplaced. By placed unmapped read we mean a read that is unmapped according to bit
0x4 of the BF (BAM bit flags) data series, but has position fields filled in, thus "placing" it on a reference sequence. In contrast,
unplaced unmapped reads have have a reference sequence ID of -1 and alignment position of 0.

10

Data type

Name

Value

itf8

reference sequence id

reference sequence identifier or

-1 for unmapped reads

-2 for multiple reference sequences.

This value must match that of its enclosing
container.

itf8

alignment start

the alignment start position.
0 if the slice is multiple-reference or contains
unmapped unplaced reads

itf8

alignment span

the length of the alignment.
0 if the slice is multiple-reference or contains
unmapped unplaced reads

itf8

number of records

the number of records in the slice

1t£8

record counter

1-based sequential index of records in the
file/stream

itf8

number of blocks

the number of blocks in the slice

itf8| |

block content ids

block content ids of the blocks in the slice

itf8

embedded reference bases block content id

block content id for the embedded reference
sequence bases or -1 for none

byte[16]

reference md5

MD5 checksum of the reference bases within
the slice boundaries. If this slice has
reference sequence id of -1 (unmapped) or -2
(multi-ref) the MD5 should be 16 bytes of \0.
For embedded references, the MD5 can either
be all-zeros or the MD5 of the embedded
sequence.

byte] |

optional tags

a series of tag,type,value tuples encoded as
per BAM auxiliary fields.

The optional tags are encoded in the same manner as BAM tags. L.e. aseries of binary encoded tags concatenated
together where each tag consists of a 2 byte key (matching [A-Za-z|[A-Za-z0-9]) followed by a 1 byte type
([AfZHcCsSiIB]) followed by a string of bytes in a format defined by the type.

Tags starting in a capital letter are reserved while lowercase ones or those starting with X, Y or Z are user
definable. Any tag not understood by a decoder should be skipped over without producing an error.

At present no tags are defined.

8.6 Core data block

A core data block is a bit stream (most significant bit first) consisting of data from one or more CRAM records.
Please note that one byte could hold more then one CRAM record as a minimal CRAM record could be just a
few bits long. The core data block has the following fields:

Data type | Name Value
bit[| CRAM record 1 The first CRAM record
bit| | CRAM record N The Nth CRAM record

8.7 External data blocks

The relationship between the core data block and external data blocks is shown in the following picture:

11

O

’ N

Bit Flags
Bit Stream

—

O

Core Data Block

Alignment Start Bit encodings (Huffman, ...)

[S —

-

O

Read Length
Byte Streams

\
1
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
|
|
|
|
1
1
|
|
|
|
|
|
|
|
|
1
1
|
|
|
|
|
|
|
|
|
1
)

(
‘ 1
| |
I External I
— | |
! Data Block I
Bases : :

|
| S — ‘ :
: External :

N

! Data Block !
Quality Scores Byte encodings (external, ...) ; 1

|
— | |
: External :

N

: Data Block... :
Tags | |
,,,,,,,,,,,,,,,,, ,

Figure 5: The relationship between core and external encodings, and core and external data blocks.

The picture shows how a CRAM record (on the left) is distributed between the core data block and one or more
external data blocks, via core or external encodings. The specific encodings presented are only examples for
purposes of illustration. The main point is to distinguish between core bit encodings whose output is always
stored in a core data block, and external byte encodings whose output is always stored in external data blocks.

9 End of file container

A special container is used to mark the end of a file or stream. It is required in version 3 or later. The idea is
to provide an easy and a quick way to detect that a CRAM file or stream is complete. The marker is basically
an empty container with ref seq id set to -1 (unaligned) and alignment start set to 4542278.

Here is a complete content of the EOF container explained in detail:

12

hex bytes \ data type \ decimal value \ field name

Container header

0f 00 00 00 | integer 15 size of blocks data

ff ff ff ff Of | itf8 -1 ref seq id

e0 45 4f 46 | itf8 4542278 alignment start

00 itf8 0 alignment span

00 itf8 0 number of records

00 itf8 0 global record counter
00 itf8 0 bases

01 itf8 1 block count

00 array 0 landmarks

05 bd d9 4f | integer 1339669765 container header CRC32
Compression header block

00 byte 0 (RAW) compression method
01 byte 1 (COMPRESSION HEADER) block content type

00 itf8 0 block content id

06 itf8 6 compressed size

06 itf8 6 uncompressed size
Compression header

01 itf8 1 preservation map byte size
00 itf8 0 preservation map size
01 itf8 1 encoding map byte size
00 itf8 0 encoding map size

01 itf8 1 tag encoding byte size
00 itf8 0 tag encoding map size
ee 63 01 4b | integer 1258382318 block CRC32

When compiled together the EOF marker is 38 bytes long and in hex representation is:
0f 00 00 00 ff ff ff ff Of e0 45 4f 46 00 00 00 00 01 00 05 bd d9 4f 00 01 00 06 06 01 00 01 00 01 00 ee 63 01 4b

10 Record structure

CRAM record is based on the SAM record but has additional features allowing for more efficient data storage.
In contrast to BAM record CRAM record uses bits as well as bytes for data storage. This way, for example,
various coding techniques which output variable length binary codes can be used directly in CRAM. On the
other hand, data series that do not require binary coding can be stored separately in external blocks with some
other compression applied to them independently.

As CRAM data series may be interleaved within the same blocks* understanding the order in which CRAM
data series must be decoded is vital.

The overall flowchart is below, with more detailed description in the subsequent sections.

10.1 CRAM record

Both mapped and unmapped reads start with the following fields. Please note that the data series type refers
to the logical data type and the data series name corresponds to the data series encoding map.

4Interleaving can sometimes provide better compression, however it also adds dependency between types of data meaning it is
not possible to selectively decode one data series if it co-locates with another data series in the same block.

13

Data series Data series Field Description

type name

int BF BAM bit flags see BAM bit flags below
int CF CRAM bit flags see CRAM bit flags below
- - Positional data See section 10.2

- - Read names See section 10.3

- - Mate records See section 10.4

- - Auxiliary tags See section 10.5

- - Sequences See sections 10.6 and 10.7

BAM bit flags (BF data series)

The following flags are duplicated from the SAM and BAM specification, with identical meaning. Note however
some of these flags can be derived during decode, so may be omitted in the CRAM file and the bits computed
based on both reads of a pair-end library residing within the same slice.

Bit flag Comment Description
0x1 template having multiple
segments in sequencing
0x2 each segment properly aligned
according to the aligner
0x4 segment unmapped?
0x8 calculatedP or stored in the next segment in template
mate’s info unmapped
0x10 SEQ being reverse
complemented
0x20 calculatedP or stored in the SEQ of the next segment in the
mate’s info template being reverse
complemented
0x40 the first segment in the template®
0x80 the last segment in the template®
0x100 secondary alignment
0x200 not passing quality controls
0x400 PCT or optical duplicate
0x800 Supplementary alignment

& Bit 0x4 is the only reliable place to tell whether the read is unmapped. If 0x4 is set, no assumptions may
be made about bits 0x2, 0x100 and 0x800.

b For segments within the same slice.

¢ Bits 0x40 and 0x80 reflect the read ordering within each template inherent in the sequencing technology
used, which may be independent from the actual mapping orientation. If 0x40 and 0x80 are both set, the
read is part of a linear template (one where the template sequence is expected to be in a linear order),
but it is neither the first nor the last read. If both 0x40 and 0x80 are unset, the index of the read in the
template is unknown. This may happen for a non-linear template (such as one constructed by stitching
together other templates) or when this information is lost during data processing.

CRAM bit flags (CF data series)

The CRAM bit flags (also known as compression bit flags) expressed as an integer represent the CF data series.
The following compression flags are defined for each CRAM read record:

14

Bit flag | Name Description

0x1 quality scores stored as array quality scores can be stored as read features or as an
array similar to read bases.
0x2 detached mate information is stored verbatim (e.g. because the

pair spans multiple slices or the fields differ to the
CRAM computed method)

0x4 has mate downstream tells if the next segment should be expected further in
the stream
0x8 decode sequence as “*” informs the decoder that the sequence is unknown and

that any encoded reference differences are present only
to recreate the CIGAR string.

The following pseudocode describes the general process of decoding an entire CRAM record. The sequence data
itself is in one of two encoding formats depending on whether the record is aligned (mapped).

Decode pseudocode

1: procedure DECODERECORD

2: BAM flags <+ READITEM(BF, Integer)

3: CRAM _flags + READITEM(CF, Integer)

4: DECODEPOSITIONS > See section 10.2
5 DECODENAMES > See section 10.3
6 DECODEMATEDATA > See section 10.4
7 DECODETAGDATA > See section 10.5
8: if (BF AND 4) # 0 then > Unmapped flag
9: DECODEMAPPEDREAD > See section 10.6
10: else

11: DECODEUNMAPPEDREAD > See section 10.7

12: end if
13: end procedure

10.2 CRAM positional data

Following the bit-wise BAM and CRAM flags, CRAM encodes positional related data including reference,
alignment positions and length, and read-group. Positional data is stored for both mapped and unmapped
sequences, as unmapped data may still be “placed” at a specific location in the genome (without being aligned).
Typically this is done to keep a sequence pair (paired-end or mate-pair sequencing libraries) together when one
of the pair aligns and the other does not.

For reads stored in a position-sorted slice, the AP-delta flag in the compression header preservation map should
be set and the AP data series will be delta encoded, using the slice alignment-start value as the first position to
delta against. Note for multi-reference slices this may mean that the AP series includes negative values, such as
when moving from an alignment to the end of one reference sequence to the start of the next or to unmapped
unplaced data. When the AP-delta flag is not set the AP data series is stored as a normal integer value.

Data series Data series Field Description

type name

int RI ref id reference sequence id (only present in
multiref slices)

int RL read length the length of the read

int AP alignment start the alignment start position

int RG read group the read group identifier expressed as
the N record in the header, starting
from 0 with -1 for no group

1: procedure DECODEPOSITIONS
2: if slice_header.reference sequence id = —2 then

15

3: reference_id < READITEM(RI, Integer)

4: else

5: reference_id < slice _header.reference__sequence _id
6: end if

7: read_length < READITEM(RL, Integer)

8: if container pmap.AP _delta # 0 then

9: if first _record in_slice then

10: last _position < slice _header.alignment _start

11: end if

12: alignment _position < READITEM(AP, Integer) + last _position
13: last _position < alignment position

14: else

15: alignment _position < READITEM(AP, Integer)

16: end if

17: read__group < READITEM(RG, Integer)

18: end procedure

10.3 Read names (RN data series)

Read names can be preserved in the CRAM format, but this is optional and is governed by the RN preservation
map key in the container compression header. See section 8.4. When read names are not preserved the CRAM
decoder should generate names, typically based on the file name and a numeric ID of the read using the record
counter field of the slice header block. Note read names may still be preserved even when the RN compression
header key indicates otherwise, such as where a read is part of a read-pair and the pair spans multiple slices. In
this situation the record will be marked as detached (see the CF data series) and the mate data below (section
10.4) will contain the read name.

Data series Data series Field Description
type name

byte] | RN read names read names
1: procedure DECODENAMES

2 if container pmap.read names included =1 then

3: read_name <— READITEM(RN, Bytel])

4: else

5 read__name < GENERATENAME

6 end if

7: end procedure

10.4 Mate record

There are two ways in which mate information can be preserved in CRAM: number of records downstream
(distance, within this slice) to the next fragment in the template and a special mate record if the next fragment
is not in the current slice. In the latter case the record is labelled as “detached”, see the CF data series.

For mates within the slice only the distance is captured, and only for the first record. The mate has neither
detached nor downstream flags set in the CF data series.

Data series Data series name Description
type
int NF the number of records to the next fragment

In the above case, the NS (mate reference name), NP (mate position) and TS (template size) fields for both
records should be derived once the mate has also been decoded. Mate reference name and position are obvious
and simply copied from the mate. The template size is computed using the method described in the SAM
specification; the inclusive distance from the leftmost to rightmost mapped bases with the sign being positive
for the leftmost record and negative for the rightmost record.

16

If the next fragment is not found within this slice then the following structure is included into the CRAM record.
Note there are cases where read-pairs within the same slice may be marked as detached and use this structure,
such as to store mate-pair information that does not match the algorithm used by CRAM for computing the
mate data on-the-fly.

Data series Data series name Description

type

int MF next mate bit flags, see table below

byte] | RN the read name (if and only if not known already)
int NS mate reference sequence identifier

int NP mate alignment start position

int TS the size of the template (insert size)

Next mate bit flags (MF data series)

The next mate bit flags expressed as an integer represent the MF data series. These represent the missing bits
we excluded from the BF data series (when compared to the full SAM/BAM flags). The following bit flags are
defined:

Bit flag Name Description
0x1 mate negative strand bit the bit is set if the mate is on the negative strand
0x2 mate unmapped bit the bit is set if the mate is unmapped

Decode mate pseudocode

In the following pseudocode we are assuming the current record is this and its mate is next frag.

1: procedure DECODEMATEDATA
2: if CF AND 2 then > Detached from mate

3: mate_ flags + READITEM(MF Integer)

4: if mate_flags AND 1 then

5: bam__flags < bam_ flags OR 0x20 > Mate is reverse-complemented
6: end if

7: if mate flags AND 2 then

8: bam__flags < bam__flags OR 0x08 > Mate is unmapped
9: end if

10: if container _pmap.read _names_included # 1 then

11: read_name < READITEM(RN, Byte||)

12: end if

13: mate_ref _id < READITEM(NS, Integer)

14: mate _position < READITEM(NP, Integer)

15: template _size < READITEM(TS, Integer)

16: else if CF AND 4 then > Mate is downstream
17: if next frag.bam_flags AND 0x10 then

18: this.bam__ flags < this.bam__flags OR 0x20 > next segment reverse complemented
19: end if

20: if next frag.bam__flags AND 0x04 then

21: this.bam__ flags < this.bam _flags OR 0x08 > next segment unmapped
22: end if

23: next frag + READITEM(NF,Integer)

24: Resolve mate _ref id for this record and this 4+ next _frag once both have been decoded

25: Resolve mate__position for this record and this + next frag once both have been decoded

26: Find leftmost and rightmost mapped coordinate in records this and this + next _frag.

27: For leftmost of this and this + next frag record: template size < rightmost — le ftmost + 1

28: For rightmost of this and this + next _frag record: template size <— —(rightmost — le ftmost + 1)

29: end if
30: end procedure

Note as with the SAM specification a template may be permitted to have more than two alignment records.
In this case the “mate” for each record is considered to be the next record, with the mate for the last record

17

being the first to form a circular list. The above algorithm is a simplification that does not deal with this
scenario. The full method needs to observe when record this + NF is also labelled as having an additional
mate downstream. One recommended approach is to resolve the mate information in a second pass, once the
entire slice has been decoded. The final segment in the mate chain needs to set bam__ flags fields 0x20 and
0x08 accordingly based on the first segment. This is also not listed in the above algorithm, for brevity.

10.5 Auxiliary tags

Tags are encoded using a tag line (TL data series) integer into the tag dictionary (TD field in the compression
header preservation map, see section 8.4). See section 8.4 for a more detailed description of this process.

Data series Data series Field Description

type name

int TL tag line an index into the tag dictionary (TD)

* 777 tag name/type 3 character key (2 tag identifier and 1 tag
type), as specified by the tag dictionary

1: procedure DECODETAGDATA

2 tag line + READITEM(TL,Integer)

3 for all ele € container _pmap.tag _dict(tag line) do
4: name < first two characters of ele

5: tag(type) < last character of ele

6 tag(name) < READITEM(ele, Byte[])

7 end for
8: end procedure

In the above procedure, name is a two letter tag name and type is one of the permitted types documented
in the SAM/BAM specification. Type is ¢ (signed 8-bit integer), C (unsigned 8-bit integer), s (signed 16-bit
integer), S (unsigned 16-bit integer), i (signed 32-bit integer), I (unsigned 32-bit integer), £ (32-bit float), Z
(nul-terminated string), H (nul-terminated string of hex digits) and B (binary data in array format with the
first byte being one of ¢,C,s,S,i,I,f using the meaning above, a 32-bit integer for the number of array elements,
followed by array data encoded using the specified format). All integers are little endian encoded.

For example a SAM tag MQ:i has name MQ and type i and will be decoded using one of MQc, MQC, MQs,
MQS, MQi and MQI data series depending on size and sign of the integer value.

Note some auxiliary tags can be created automatically during decode so can optionally be removed by the
encoder. However if the decoder finds a tag stored verbatim it should use this in preference to automatically
computing the value.

The RG (read group) auxiliary tag should be created if the read group (RG data series) value is not —1.

The MD and NM auxiliary tags store the differences (an edit string) between the sequence and the reference
along with the number of mismatches. These may optionally be created on-the-fly during reference-based
sequence reconstruction and should match the description provided in the SAMtags document. An encoder
may decide to store these verbatim when no reference is used or where the automatically constructed values
differ to the input data.

Note there is no mechanism to describe which records have MD /NM present and which do not. If this is deemed
important, the only recourse is to store all MD and NM verbatim and to request that the decoding software
does not automatically generate its own for records that have no stored MD and NM tags.

10.6 Mapped reads
Read feature records
Read features are used to store read details that are expressed using read coordinates (e.g. base differences

respective to the reference sequence). The read feature records start with the number of read features followed
by the read features themselves. Finally the single mapping quality and per-base quality scores are stored.

18

Data series type

Data series
name

Field

Description

int FN number of read the number of read features
features

int FP in-read-position® position of the read feature

byte FC read feature code® See feature codes below

* * read feature data® | See feature codes below

int MQ mapping qualities mapping quality score

byte[read length] QS quality scores the base qualities, if preserved

& Repeated FN times, once for each read feature.

Read feature codes

Each feature code has its own associated data series containing further information specific to that feature. The
following codes are used to distinguish variations in read coordinates:

Feature code Id Data series Data series Description
type name

Bases b (0x62) byte| | BB a stretch of bases

Scores q (0x71) byte] | QQ a stretch of scores

Read base B (0x42) byte,byte BA,QS A base and associated quality
score

Substitution X (0x58) | byte BS base substitution codes, SAM
operators X, M and =

Insertion I (0x49) byte| | IN inserted bases, SAM operator
1

Deletion D (0x44) | int DL number of deleted bases,
SAM operator D

Insert base i (0x69) byte BA single inserted base, SAM
operator I

Quality score Q (0x51) byte QS single quality score

Reference skip N (0x4E) | int RS number of skipped bases,
SAM operator N

Soft clip S (0x53) byte| | SC soft clipped bases, SAM
operator S

Padding P (0x50) int PD number of padded bases,
SAM operator P

Hard clip H (0x48) int HC number of hard clipped bases,
SAM operator H

Base substitution codes (BS data series)

A base substitution is defined as a change from one nucleotide base (reference base) to another (read base),
including N as an unknown or missing base. There are 5 possible reference bases (ACGTN), with 4 possible
substitutions for each base, and 20 substitutions in total. The codes for all possible substitutions are stored in
a substitution matrix. To restore a base, one would use the reference base and the substitution code, resolving
the base via lookup in the substitution matrix.

Substitution Matrix Format

Each of the 4 possible substitutions for a given reference base is assigned a 2-bit integer code (see below) with
a value ranging from 0 to 3 inclusive. The 4 2-bit codes are packed into a single byte, high 2-bits first, for each
base ACGTN (minus the reference base itself). The entire substitution matrix is written as 5 such bytes, one
for each reference base, also in the order ACGTN.

19

Substitution Code Assignment

To assign the susbtitution code for a given reference base/read base, the substitutions for each reference base
may optionally be sorted by their frequencies, in descending order, with same-frequency ties broken using the
fixed order ACGTN. Although sorting by substitution frequency is not required by the CRAM format, assigning
substitution codes based on frequency maximizes compression by ensuring that the most frequent substitutions

use the shortest possible codes.

For example, let us assume the following substitution frequencies for base A:

AC: 15%
AG: 25%
AT: 55%
AN: 5%

Then the substitution codes are:

AC: 2
AG: 1
AT: 0
AN: 3

The first byte of the substitution matrix entry for reference base A is written as a single byte, with the codes in
the order CGTN: 10 01 00 11 = 147 decimal, or 0x93 in this case. This will then be followed by 4 more bytes

representing substitutions for reference bases C, G, T and N.

Decode mapped read pseudocode

1:
2
3
4:
5:
6
7
8
9

procedure DECODEMAPPEDREAD

feature _number < READITEM(FN, Integer)

for i < 1 to feature number do
DECODEFEATURE

end for

mapping _quality < READITEM(MQ), Integer)

if container _pmap.preserve _quality scores then
for i <~ 1 to read_length do

quality _score < READITEM(QS, Integer)

end for

end if

12: end procedure

13: procedure DECODEFEATURE

feature _code + READITEM(FC, Integer)
feature _position+— READITEM(FP, Integer)
if feature code =B’ then

base < READITEM(BA, Byte)

quality _score + READITEM(QS, Byte)
else if feature code =X’ then

substitution _code <+ READITEM(BS, Byte)
else if feature code =T then

inserted _bases < READITEM(IN, Byte[])
else if feature code ='S’ then

softclip _bases < READITEM(SC, Byte[])
else if feature code =‘H’ then

hardclip _length <+ READITEM(HC, Integer)
else if feature code =P’ then

pad_length < READITEM(PD, Integer)
else if feature code =D’ then

deletion_length <+ READITEM(DL, Integer)

20

31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

else if feature code =N’ then
ref skip length <+ READITEM(RS, Integer)
else if feature code =i’ then

base < READITEM(BA, Byte)
else if feature code =b’ then
bases < READITEM(BB, Bytel])

else if feature code =‘q’ then
quality _scores <+ READITEM(QQ, Bytel])
else if feature code =‘Q’ then
quality _score + READITEM(QS, Byte)
end if
end procedure

10.7 Unmapped reads

The CRAM record structure for unmapped reads has the following additional fields:

Data series type Data series Field Description
name

byte[read length] BA bases the read bases

byte[read length]| QS quality scores the base qualities, if preserved

1: procedure DECODEUNMAPPEDREAD

2 for ¢ < 1 to read length do

3 base < READITEM(BA, Byte)

4 end for

5: if container pmap.preserve quality scores then

6 for i < 1 to read_length do

7 quality _score < READITEM(QS, Byte)

8 end for

9: end if

10: end procedure

11 Reference sequences

CRAM format is natively based upon usage of reference sequences even though in some cases they are not
required. In contrast to BAM format CRAM format has strict rules about reference sequences.

1. M5 (sequence MD5 checksum) field of @SQ sequence record in the BAM header is required and UR (URI

for the sequence fasta optionally gzipped file) field is strongly advised. The rule for calculating MD5 is
to remove any non-base symbols (like \n, sequence name or length and spaces) and upper case the rest.
Here are some examples:

> samtools faidx human_glk_v37.fasta 1 | grep -v ’>~>’ | tr -d ’\n’ | tr a-z A-Z | md5sum

1b22b98cdeb4a9304cb5d48026a85128 -
> samtools faidx human_glk_v37.fasta 1:10-20 |grep -v ’~>’ [tr -d ’\n’ [tr a-z A-Z |md5sum

0£2a4865e3952676ffad2c3671£14057 -

Please note that the latter calculates the checksum for 11 bases from position 10 (inclusive) to 20 (inclusive)
and the bases are counted 1-based, so the first base position is 1.

2. All CRAM reader implementations are expected to check for reference MD5 checksums and report any

missing or mismatching entries. Consequently, all writer implementations are expected to ensure that all
checksums are injected or checked during compression time.

21

3. In some cases reads may be mapped beyond the reference sequence. All out of range reference bases are
all assumed to be ‘N’.

4. MDb) checksum bytes in slice header should be ignored for unmapped or multiref slices.

12 Indexing

General notes

Indexing is only valid on coordinate (reference ID and then leftmost position) sorted files.

Please note that CRAM indexing is external to the file format itself and may change independently of the file
format specification in the future. For example, a new type of index file may appear.

Individual records are not indexed in CRAM files, slices should be used instead as a unit of random access.
Another important difference between CRAM and BAM indexing is that CRAM container header and com-
pression header block (first block in container) must always be read before decoding a slice. Therefore two read
operations are required for random access in CRAM.

Indexing a CRAM file is deemed to be a lightweight operation because it usually does not require any CRAM
records to be read. Indexing information can be obtained from container headers, namely sequence id, alignment
start and span, container start byte offset and slice byte offset inside the container (landmarks). The exception
to this is with multi-reference containers, where the “RI” data series must be read.

CRAM index
A CRAM index is a gzipped tab delimited file containing the following columns:

1. Reference sequence id

2. Alignment start (ignored on read for unmapped slices, set to 0 on write)
3. Alignment span (ignored on read for unmapped slices, set to 0 on write)
4. Absolute byte offset of Container header in the file.
5

. Relative byte offset of the Slice header block, from the end of the container header. This is the same as
the “landmark” field in the container header.

6. Slice size in bytes (including slice header and all blocks).

Each line represents a slice in the CRAM file. Please note that all slices must be listed in the index file.

Multi-reference slices may need to have multiple lines for the same slice; one for each reference contained within
that slice. In this case the index reference sequence ID will be the actual reference ID (from the “RI” data
series) and not -2.

Slices containing solely unmapped unplaced data (reference ID -1) still require values for all columns, although
the alignment start and span will be ignored. It is recommended that they are both set to zero.

To illustrate this the absolute and relative offsets used in a three slice container are shown in the diagram below.

Size 1 Size 2~ Size 3

7
>*
3

Container | Compression

Header Header Block Slice 1 Slice 2 Slice 3

b
Slice offset 1

A

Container
absolute
offset

" Slice offset 2

A

" Slice offset 3

22

BAM index

BAM indexes are supported by using 4-byte integer pointers called landmarks that are stored in container
header. BAM index pointer is a 64-bit value with 48 bits reserved for the BAM block start position and 16 bits
reserved for the in-block offset. When used to index CRAM files, the first 48 bits are used to store the CRAM
container start position and the last 16 bits are used to store the index of the landmark in the landmark array
stored in container header. The landmark index can be used to access the appropriate slice.

The above indexing scheme treats CRAM slices as individual records in BAM file. This allows to apply BAM
indexing to CRAM files, however it introduces some overhead in seeking specific alignment start because all
preceding records in the slice must be read and discarded.

13 Encodings

13.1 Introduction

The basic idea for codings is to efficiently represent some values in binary format. This can be achieved in a
number of ways that most frequently involve some knowledge about the nature of the values being encoded, for
example, distribution statistics. The methods for choosing the best encoding and determining its parameters
are very diverse and are not part of the CRAM format specification, which only describes how the information
needed to decode the values should be stored.

Note two of the encodings (Golomb and Golomb-Rice) are listed as deprecated. These are still formally part
of the CRAM specification, but have not been used by the primary implementations and may not be well
supported. Therefore their use is permitted, but not recommended.

Offset

Many of the codings listed below encode positive integer numbers. An integer offset value is used to allow any
integer numbers and not just positive ones to be encoded. It can also be used for monotonically decreasing
distributions with the maximum not equal to zero. For example, given offset is 10 and the value to be encoded
is 1, the actually encoded value would be offset+value=11. Then when decoding, the offset would be subtracted
from the decoded value.

13.2 EXTERNAL: codec ID 1

Can encode types Byte, Integer.

The EXTERNAL coding is simply storage of data verbatim to an external block with a given ID. If the type is
Byte the data is stored as-is, otherwise for Integer type the data is stored in ITF8.

Parameters

CRAM format defines the following parameters of EXTERNAL coding;:

Data type Name Comment
itf8 external id id of an external block containing the byte stream

13.3 Huffman coding: codec ID 3

Can encode types Byte, Integer.

Huffman coding replaces symbols (values to encode) by binary codewords, with common symbols having shorter
codewords such that the total message of binary codewords is shorter than using uniform binary codeword
lengths. The general process consists of the following steps.

e Obtain symbol code lengths.

23

— If encoding;:
- Compute symbol frequencies.
- Compute code lengths from frequencies.

— If decoding;:
- Read code lengths from codec parameters.

e Compute canonical Huffman codewords from code lengths®.
e FEncode or decode bits as per the symbol to codeword table. Codewords have the “prefix property” that

no codeword is a prefix of another codeword, enabling unambiguous decode bit by bit.

The use of canonical Huffman codes means that we only need to store the code lengths and use the same
algorithm in both encoder and decoder to generate the codewords. This is achieved by ensuring our symbol
alphabet has a natural sort order and codewords are assigned in numerical order.

Important note: for alphabets with only one value, the codeword will be zero bits long. This
makes the Huffman codec an efficient mechanism for specifying constant values.

Canonical code computation

1. Sort the alphabet ascending using bit-lengths and then using numerical order of the values.

2. The first symbol in the list gets assigned a codeword which is the same length as the symbol’s original
codeword but all zeros. This will often be a single zero (’0’).

3. Each subsequent symbol is assigned the next binary number in sequence, ensuring that following codes
are always higher in value.

4. When you reach a longer codeword, then after incrementing, append zeros until the length of the new
codeword is equal to the length of the old codeword.

Examples
Symbol Code length Codeword
A 1 0
B 3 100
C 3 101
D 3 110
E 4 1110
F 4 1111
Parameters
Data type Name Comment
itfg] | alphabet list of all encoded symbols (values)
itf8] | bit-lengths array of bit-lengths for each symbol in the alphabet

13.4 Byte array coding

Often there is a need to encode an array of bytes where the length is not predetermined. For example the read
identifiers differ per alignment record, possibly with different lengths, and this length must be stored somewhere.
There are two choices available: storing the length explicitly (BYTE ARRAY LEN) or continuing to read
bytes until a termination value is seen (BYTE ARRAY STOP).

Note in contrast to this, quality values are known to be the same length as the sequence which is an already
known quantity, so this does not need to be encoded using the byte array codecs.

Shttps://en.wikipedia.org/wiki/Canonical_ Huffman_code

24

https://en.wikipedia.org/wiki/Canonical_Huffman_code

BYTE ARRAY LEN: codec ID 4

Can encode types Byte/ /.

Byte arrays are captured length-first, meaning that the length of every array element is written using an
additional encoding. For example this could be a HUFFMAN encoding or another EXTERNAL block. The
length is decoded first followed by the data, followed by the next length and data, and so on.

This encoding can therefore be considered as a nested encoding, with each pair of nested encodings containing
their own set of parameters. The byte stream for parameters of the BYTE ARRAY LEN encoding is therefore
the concatenation of the length and value encoding parameters as described in section 2.3.

The parameter for BYTE ARRAY LEN are listed below:

Data type Name Comment

encoding<int> lengths encoding an encoding describing how the arrays lengths are
captured

encoding<byte> values encoding an encoding describing how the values are captured

For example, the bytes specifying a BYTE ARRAY LEN encoding, including the codec and parameters, for
a 16-bit X0 auxiliary tag (“X0C”) may use HUFFMAN encoding to specify the length (always 2 bytes) and an
EXTERNAL encoding to store the value to an external block with ID 200.

Bytes Meaning

0x04 BYTE ARRAY LEN codec ID

0x0a 10 remaining bytes of BYTE ARRAY LEN parameters
0x03 HUFFMAN codec ID, for aux tag lengths

0x04 4 more bytes of HUFFMAN parameters

0x01 Alphabet array size = 1

0x02 alphabet symbol; (length = 2)

0x01 Codeword array size = 1

0x00 Code length = 0 (zero bits needed as alphabet is size 1)
0x01 EXTERNAL codec ID, for aux tag values

0x02 2 more bytes of EXTERNAL parameters

0x80 0xc8 ITF8 encoding for block ID 200

BYTE ARRAY _ STOP: codec ID 5

Can encode types Byte/ |.

Byte arrays are captured as a sequence of bytes terminated by a special stop byte. The data returned does not
include the stop byte itself. In contrast to BYTE ARRAY _LEN the value is always encoded with EXTERNAL
so the parameter is an external id instead of another encoding.

Data type Name Comment
byte stop byte a special byte treated as a delimiter
itf8 external id id of an external block containing the byte stream

13.5 Beta coding: codec ID 6

Can encode types Integer.

Definition
Beta coding is a most common way to represent numbers in binary notation and is sometimes referred to as

binary coding. The decoder reads the specified fixed number of bits (most significant first) and subtracts the
offset value to get the decoded integer.

25

Parameters

CRAM format defines the following parameters of beta coding:

Data type Name Comment
itf8 offset offset is subtracted from each
value during decode
itf8 length the number of bits used
Examples

If we have integer values in the range 10 to 15 inclusive, the largest value would traditionally need 4 bits, but
with an offset of -10 we can hold values 0 to 5, using a fixed size of 3 bits. Using fixed Offset and Length coming
from the beta parameters, we decode these values as:

Offset Length Bits Value
-10 3 000 10
-10 3 001 11
-10 3 010 12
-10 3 011 13
-10 3 100 14
-10 3 101 15

13.6 Subexponential coding: codec ID 7

Can encode types Integer.

Definition

Subexponential coding® is parametrized by a non-negative integer k. For values n < 2**! subexponential coding
produces codewords identical to Rice coding *. For larger values it grows logarithmically with n.

Encoding

1. Add offset to n.

2. Determine v and b values from n

b k if n < 2k 0 if n < 2k
= u =
|logan| if n > 2* b—k+1 ifn>2k

3. Write u in unary form; u 1 bits followed by a single 0 bit.

4. Write the bottom b-bits of n in binary form.

Decoding

1. Read u in unary form, counting the number of leading 1s (prefix) in the codeword (discard the trailing 0
bit).

2. Determine n via:

(a) if u =0 then read n as a k-bit binary number.
(b) if u > 1 then read z as a (u + k — 1)-bit binary. Let n = 2uTF=1 4 g,

3. Subtract offset from n.

6Fast progressive lossless image compression, Paul G. Howard and Jeffrey Scott Vitter, 1994. http://www.ittc.ku.edu/~jsv/
Papers/HoV94.progressive_FELICS.pdf
"https://en.wikipedia.org/wiki/Golomb_coding#Rice_coding

26

http://www.ittc.ku.edu/~jsv/Papers/HoV94.progressive_FELICS.pdf
http://www.ittc.ku.edu/~jsv/Papers/HoV94.progressive_FELICS.pdf
https://en.wikipedia.org/wiki/Golomb_coding#Rice_coding

Examples

Number Codeword, k=0 Codeword, k=1 Codeword, k=2

0 0 00 000

1 10 01 001

2 1100 100 010

3 1101 101 011

4 111000 11000 1000

) 111001 11001 1001

6 111010 11010 1010

7 111011 11011 1011

8 11110000 1110000 110000

9 11110001 1110001 110001

10 11110010 1110010 110010
Parameters

Data type Name Comment

itf8 offset offset is subtracted from each value during decode

itf8 k the order of the subexponential coding

13.7 Gamma coding: codec ID 9

Can encode types Integer.

Definition

Elias gamma code is a prefix encoding of positive integers. This is a combination of unary coding and beta

coding. The first is used to capture the number of bits required for beta coding to capture the value.

Encoding

1. Write it in binary.

2. Subtract 1 from the number of bits written in step 1 and prepend that many zeros.

3. An equivalent way to express the same process:

4. Separate the integer into the highest power of 2 it contains (2N) and the remaining N binary digits of
the integer.

5. Encode N in unary; that is, as N zeroes followed by a one.

6. Append the remaining N binary digits to this representation of N.

Decoding

1. Read and count Os from the stream until you reach the first 1. Call this count of zeroes N.

2. Considering the one that was reached to be the first digit of the integer, with a value of 2N, read the

remaining N digits of the integer.

27

Examples

Value Codeword
1 1
2 010
3 011
4 00100
Parameters
Data type Name Comment
itf8 offset offset to subtract from each

value after decode

13.8 DEPRECATED: Golomb coding: codec ID 2

Can encode types Integer.

Note this codec has not been used in any known CRAM implementation since before CRAM v1.0. Nor is it

implemented in some of the major software. Therefore its use is not recommended.

Definition

Golomb encoding is a prefix encoding optimal for representation of random positive numbers following geometric

distribution.

Encoding
1. Fix the parameter M to an integer value.
2. For N, the number to be encoded, find

(a) quotient ¢ = |N/M |
(b) remainder » = N mod M

3. Generate Codeword

(a) The Code format : <Quotient Code><Remainder Code>, where

(b) Quotient Code (in unary coding)
i. Write a ¢-length string of 1 bits
ii. Write a 0 bit

(¢) Remainder Code (in truncated binary encoding)

Set b = [loga(M)]

i. If r < 2 — M code r as plain binary using b — 1 bits.

ii. If r > 2 — M code the number 7 + 2® — M in plain binary representation using b bits.

Decoding

1. Read ¢ via unary coding: count the number of 1 bits and consume the following 0 bits.

2. Set b= [loga(M)]
3. Read r via b — 1 bits of binary coding
4. Ifr>20—M

(a) Read 1 single bit, x.
(b) Set r =7 %24z — (2 — M)

5. Value is ¢ x M + r — offset

28

Examples

Number Codeword, M=10,
(thus b=4)

0 0000

4 0100

10 10000

26 1101100

42 11110010
Parameters

Golomb coding takes the following parameters:

Data type Name Comment

itf8 offset offset is added to each value

itf8 M the golomb parameter (number
of bins)

13.9 DEPRECATED: Golomb-Rice coding: codec ID 8

Can encode types Integer.

Note this codec has not been used in any known CRAM implementation since before CRAM v1.0. Nor is it
implemented in some of the major software. Therefore its use is not recommended.

Golomb-Rice coding is a special case of Golomb coding when the M parameter is a power of 2. The reason for
this coding is that the division operations in Golomb coding can be replaced with bit shift operators as well as
avoiding the extra r < 2° — M check.

14 External compression methods

External encoding operates on bytes only. Therefore any data series must be translated into bytes before sending
data into an external block. The following agreements are defined.

Integer values are written as ITF8, which then can be translated into an array of bytes.

Strings, like read name, are translated into bytes according to UTFS8 rules. In most cases these should coincide
with ASCII, making the translation trivial.

14.1 Gzip

The Gzip specification is defined in RFC 1952. Gzip in turn is an encapsulation on the Deflate algorithm defined
in RFC 1951.

14.2 Bzip2

Bzip2 is a compression method utilising the Burrows Wheeler Transform, Move To Front transform, Run Length
Encoding and a Huffman entropy encoder. It is often superior to Gzip for textual data.

An informal format specification exists:
https://github.com/dsnet/compress/blob/master/doc/bzip2-format.pdf

14.3 LZMA

LZMA is the Lempel-Ziv Markov chain algorithm. CRAM uses the xz Stream format to encapsulate this
algorithm, as defined in https://tukaani.org/xz/xz-file-format.txt.

29

https://github.com/dsnet/compress/blob/master/doc/bzip2-format.pdf
https://tukaani.org/xz/xz-file-format.txt

14.4 rANS codec

rANS is the range-coder variant of the Asymmetric Numerical System®.

The structure of the external rANS codec consists of several components: meta-data consisting of compression-
order, and compressed and uncompressed sizes; normalised frequencies of the alphabet systems to be encoded,
either in Order-0 or Order-1 context; and the rANS encoded byte stream itself.

Here "Order" refers to the number of bytes of context used in computing the frequencies. It will be 0 or 1.
Ignoring punctuation and space, an Order-0 analysis of English text may observe that ‘e’ is the most common
letter (12-13%), and that ‘u’ occurs only around 2.5% of the time. If instead we consider the frequency of a
letter in the context of one previous letter (Order-1) then these statistics change considerably; we know that if
the previous letter was ‘q’ then ‘e’ becomes a rare letter while ‘u’ is the most likely.

These observed frequencies are directly related to the amount of storage required to encode a symbol (e.g. an
alphabet letter)?.

14.4.1 rANS compressed data structure

A compressed data block consists of the following logical parts:

Value data type | Name Description

byte order the order of the codec,
either 0 or 1

int compressed size | the size in bytes of

frequency table and
compressed blob

int data size raw or uncompressed
data size in bytes

byte| | frequency table | byte frequencies of
input data written
using RLE

byte| | compressed blob | compressed data

14.4.2 Frequency table

The alphabet used here is simply byte values, so a maximum of 256 symbols as some values may not be present.

The symbol frequency table indicates which symbols are present and what their relative frequencies are. The
total sum of symbol frequencies are normalised to add up to 4095.

Formally, this is an ordered alphabet A containing symbols s where s; with the i-th symbol in A, occurring
with the frequency freg;.

Order-0 encoding

The normalised symbol frequencies are then written out as {symbol, frequency} pairs in ascending order of
symbol (0 to 255 inclusive). If a symbol has a frequency of 0 then it is omitted.

To avoid storing long consecutive runs of symbols if all are present (eg a-z in a long piece of English text)
we use run-length-encoding on the alphabet symbols. If two consecutive symbols have non-zero frequencies
then a counter of how many other non-zero frequency consecutive symbols is output directly after the second
consecutive symbol, with that many symbols being subsequently omitted.

For example for non-zero frequency symbols ‘a’, ‘b’, ‘c¢’, ‘d’ and ‘€’ we would write out symbol ‘a’, ‘b’ and the
value 3 (to indicate ‘c’, ‘d’ and ‘e’ are also present).

The frequency is output after every symbol (whether explicit or implicit) using ITF8 encoding. This means
that frequencies 0-127 are encoded in 1 byte while frequencies 128-4095 are encoded in 2 bytes.

8J. Duda, Asymmetric numeral systems: entropy coding combining speed of Huffman coding with compression rate of arithmetic
coding, http://arxiv.org/abs/1311.2540

9C.E. Shannon, A Mathematical Theory of Communication, Bell System Technical Journal, vol. 27, pp. 379-423, 623-656, July,
October, 1948

30

http://arxiv.org/abs/1311.2540

Finally the symbol 0 is written out to indicate the end of the symbol-frequency table.

As an example, take the string abracadabra.

Symbol frequency:

Symbol | Frequency

= &0 T o
[N]

Encoded as:

0x61 0x87 0x47
0x62 0x02 0x82 0xe8
0x81 0x74
0x81 0x74
0x72 0x82 0Oxe8
0x00

Order-1 encoding

To encode Order-1 statistics typically requires a larger table as for an N sized alphabet we need to potentially
store an Nx/N matrix. We store these as a series of Order-0 tables.

We start with the outer context byte, emitting the symbol if it is non-zero frequency. We perform the same
run-length-encoding as we use for the Order-0 table and end the contexts with a nul byte. After each context

‘a’
‘b’ <+2: c,d>
‘c’ (dimplicit)
¢d’ (dimplicit)
‘r’
<0>

Normalised to sum to 4095:

Symbol | Frequency

a 1863

b 744

¢ 372

d 372

T 744
<1863>
<744>
<372>
<372>
<744>

byte we emit the Order-0 table relating to that context.

One last caveat is that we have no context for the first byte in the data stream (in fact for 4 equally spaced
starting points, see “interleaving" below). We use the ASCII value (‘\0’) as the starting context and so need to

consider this in our frequency table.

Consider abracadabraabracadabraabracadabraabracadabra as example input.

Observed Order-1 frequencies:

Normalised (per Order-0 statistics):

Context

Symbol

Frequency

\0

4095

a

646
1725
862
862

4095

4095

4095

=|&lo|T

YIvIRAO T |

4095

Context | Symbol | Frequency
\O a 4
a a 3
b 8
C 4
d 4
b r 8
C a 4
d a 4
r a 8
Encoded as:
0x00 # ‘\0’ context
0x61 0x8f Oxff # a <4095>
0x00 # end of Order-0 table
0x61 # ‘a’ context
0x61 0x82 0x86 # a <646>
0x62 0x02 0x86 Oxbd # b <+2: c,d> <1725>
0x83 0xbe # c (implicit) <862>
0x83 Oxbe # d (implicit) <862>
0x00 # end of Order-0 table
0x62 0x02 # ‘D’ context, <+2:

c, d>

31

0x72 0x8f Oxff # r <4095>

0x00 # end of Order-0 table
‘c’ context (implicit)

0x61 0x8f Oxff # a <4095>

0x00 # end of Order-0 table
‘d’ context (implicit)

0x61 0x8f Oxff # a <4095>

0x00 # end of Order-0 table

0x72 # ‘r’ context

0x61 0x8f Oxff # a <4095>

0x00 # end of Order-0 table

0x00 # end of contexts

14.4.3 rANS entropy encoding

The encoder takes a symbol s and a current state z (initially zero) to produce a new state z’ with function C.
' =C(s,x)

The decoding function D is the inverse of C such that C(D(z)) = z.
D(z') = (s,)

The entire encoded message can be viewed as a series of nested C' operations, with decoding yielding the symbols
in reverse order, much like popping items off a stack. This is where the asymmetric part of ANS comes from.

As we encode into x the value will grow, so for efficiency we ensure that it always fits within known bounds.
This is governed by

L<z<bL-1
where b is the base and L is the lower-bound.

We ensure this property is true before every use of C' and after every use of D. Finally to end the stream we
flush any remaining data out by storing the end state of z.

Implementation specifics

We use an unsigned 32-bit integer to hold z. In encoding it is initialised to zero. For decoding it is read
little-endian from the input stream.

Recall fregq; is the frequency of the i-th symbol s; in alphabet A. We define cfreq; to be cumulative frequency
of all symbols up to but not including s;:

cfreql-:{o ifi<l1

cfreqi—1 + freqi—1 ifi>1
We have a reverse lookup table cfreq to sym, from 0 to 4095 (0xfff) that maps a cumulative frequency ¢ to
a symbol s.

cfreq_to_sym.=s; where c: cfreq; <c<cfreq; + freg;
The 2/ = C(s, x) function used for the i — thsymbols is:
' = (z/freq;) x 0x1000 + cfreq; + (z mod freg;)
The D(z') = (s,z) function used to produce the i-th symbol s and a new state z is:

c = x'&0xfff
s; = cfreq_to _sym.
x = freg;(x’'/0x1000) + ¢ — cfreq;

Most of these operations can be implemented as bit-shifts and bit-AND, with the encoder modulus being
implemented as a multiplication by the reciprocal, computed once only per alphabet symbol.

32

We use L = 0x800000 and b = 256, permitting us to flush out one byte at a time (encoded and decoded in
reverse order).

Before every encode C(s,z) we renormalise x, shifting out the bottom 8 bits of = until x < 0x80000 X freg;.
After finishing encoding we flush 4 more bytes (lowest 8-bits first) from x.

After every decoded D(2’) we renormalise ', shifting in the bottom 8 bits until 2 > 0x800000.
Interleaving

For efficiency, we interleave 4 separate rANS codecs at the same time!°. For the Order-0 codecs these simply
encode or decode the 4 neighbouring bytes in cyclic fashion using interleaved codec 1, 2, 3 and 4, sharing the
same output buffer (so the output bytes get interleaved).

For the Order-1 codec we cannot do this as we need to know the previous byte value as the context for the
next byte. Therefore split the input data into 4 approximately equal sized fragments!! starting at 0, |len/4],
|len/4]| x 2 and |len/4] x 3. Each Order-1 codec operates in a cyclic fashion as with Order-0, all starting with
0 as their state and sharing the same output buffer. Any remainder, when the input buffer is not divisible by
4, is processed at the end by the 4th rANS state.

We do not permit Order-1 encoding of data streams smaller than 4 bytes.

10F. Giesen, Interleaved entropy coders, http://arxiv.org/abs/1402.3392
HThis was why the ‘\0’ — ‘a’ context in the example above had a frequency of 4 instead of 1.

33

http://arxiv.org/abs/1402.3392

rANS decode pseudocode

A naive implementation of a rANS decoder, follows. This pseudocode is for clarity only and is not expected to
be performant and we would normally rewrite this to use lookup tables for maximum efficiency. The function
READBYTE below is undefined, but is expected to fetch the next single unsigned byte from an unspecified input
source. Similarly for READITF8 (variable size inetger) and READUINT32 (32-bit unsigned integer in little
endian format).

For brevity, we have also omitted error checking and array bounds checks.
The interpretation of some pseudocode syntax is listed below.

String Meaning

r <<y logical shift left of by y bits.
x >>1y logical shift right of by y bits.
xz & y bit-wise AND of x and y.

Vi Element ¢ of vector V.
The entire vector V may be passed into a function.
Wi ; Element ¢, j of two-dimensional vector W.

The entire vector W or a one dimensional slice W; (of size j) may be passed into a function.

procedure RANSDECODE(input, output)
: order < READBYTE > Implicit read from input
n_in <+ READUINT32
n_out < READUINT32

if order = 0 then
RANSDECODEO(output, n__out)

else

: RANSDECODEL (output, n_out)

10: end if

11: end procedure

1:
2
3
4:
5:
6
7
8
9

rANS order-0

The Order-0 code is the simplest variant. Here we also define some of the functions for manipulating the rANS
state, which are shared between Order-0 and Order-1 decoders.

(Reads a table of Order-0 symbol frequencies F;
(and sets the cumulative frequency table C;11 = C; + F})

1: procedure READFREQUENCIESO(F, C)
2: sym <— READBYTE > Next alphabet symbol
3 last _sym <« sym

4: rle <0

5: repeat

6 f + READITFS

7 Foym < f

8 if rle > 0 then

9: rle <+ rle—1

10: sym 4 sym+1

11: else

12: sym < READBYTE

13: if sym = last _sym + 1 then
14: rle < READBYTE

15: end if

16: end if

17: last _sym < sym

18: until sym =0

(Compute cumulative frequencies C; from Fj)

34

19:
20:
21:
22:
23:

24:
25:
26:

27:
28:
29:
30:
31:
32:
33:

34:
35:
36:

37:
38:
39:
40:
41:
42:

43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:
54:
55:
56:
57:
58:
59:
60:
61:

C() 0
for i + 0 to 255 do
Ciy1 < Ci+ F;
end for
end procedure

(Bottom 12 bits of our rANS state R are our frequency)
function RANSGETCUMULATIVEFREQ(R)

return R & Oxfff
end function

(Convert frequency to a symbol. Find s such that Cs < f < Cy11)
(We would normally implement this via a lookup table)
function RANSGETSYMBOLFROMFREQ(C, f)

s+ 0

while f >= C,;, do

s+—s+1

end while

return s
end function

(Compute the next rANS state R given frequency f and cumulative freq c)
function RANSADVANCESTEP(R, ¢, f)

return f x (R >>12) + (R & 0xfff) — ¢
end function

(If too small, feed in more bytes to the rANS state R)
function RANSRENORM(R)
while R < (1 << 23) do
R < (R << 8)+ READBYTE
end while
return R
end function

procedure RANSDECODEO (output, nbytes)
READFREQUENCIESO(F, C)
for j <~ 0 to 3 do
R; < READUINT32
end for
10
while i < nbytes do
for j < 0 to 3 do
if i + 7 > nbytes then return
end if
f < RANSGETCUMULATIVEFREQ(R;)
s + RANSGETSYMBOLFROMFREQ(C, f)
output;y; < s
R; < RANSADVANCESTEP(R;, Cs, Fj)
R; <+ RANSRENORM(R))
end for
i 1+4
end while
end procedure

rANS order-1

> Creates F and C vectors

> Unsigned 32-bit little endian

As described above, the decode logic is very similar to rANS Order-0 except we have a two dimensional array
of frequencies to read and the decode uses the last character as the context for decoding the next one. In the

35

pseudocode we demonstrate this by using two dimensional vectors C; ; and F; ;. For simplicity, we reuse the
Order-0 code by referring to C; and F; of the 2D vectors to get a single dimensional vector that operates in the
same manner as the Order-0 code. This is not necessarily the most efficient implementation.

Note the code for dealing with the remaining bytes when an output buffer is not an exact multiple of 4 is less
elegant in the Order-1 code. This is correct, but it is unfortunately a design oversight.

10:
11:
12:
13:
14:
15:

37:
38:
39:
40:
41:
42:
43:
44:
45:
46:

47

1
2
3
4:
5:
6
7
8
9

(Reads a table of Order-1 symbol frequencies F; ;
(and sets the cumulative frequency table C; j11 = C; ; + F; ;)
: procedure READFREQUENCIES1(F, C)
: sym < READBYTE
last _sym < sym
rle < 0
repeat
READFREQUENCIESO(Fyym, Coym)
if rle > 0 then
rle < rle—1
sym < sym + 1
else
sym <— READBYTE

if sym = last_sym + 1 then
rle <~ READBYTE
end if
end if

last _sym <+ sym
until sym =0
: end procedure

: procedure RANSDECODE] (output, nbytes)
READFREQUENCIES1(F, C)
for j < 0to 3 do
R; < READUINT32
Lj +~—0
end for
10
while i < |nbytes/4| do
for j < 0to 3 do
f < RANSGETCUMULATIVEFREQ(R;)
5 <= RANSGETSYMBOLFROMFREQ(CL,, f)
OUtputiJrjX |nbytes/4] < S
R; <~ RANSADVANCESTEP(R;, CL; s, F1L; s)
R; <+ RANSRENORM(R))
Lj — S
end for
1+ 1+1
end while
(Now deal with the remainder if buffer size is not a multiple of 4,)
(using rANS state 3 exclusively.)
14 %13
while i < nbytes do
f < RANSGETCUMULATIVEFREQ(R3)
s <~ RANSGETSYMBOLFROMFREQ(CL,, f)
oulpul;y3x |nbytes/4] < S
Rs < RANSADVANCESTEP(Rs3, CrL, s, Fr,.s)
R3 + RANSRENORM(R3)
L3y <+ s
t+—1+1
end while
: end procedure

36

> Next alphabet symbol

> Creates 2D F and C vectors

> Unsigned 32-bit little endian

15 Appendix

15.1 Choosing the container size

CRAM format does not constrain the size of the containers. However, the following should be considered when
deciding the container size:

e Data can be compressed better by using larger containers

e Random access performance is better for smaller containers

e Streaming is more convenient for small containers

e Applications typically buffer containers into memory

We recommend 1 megabyte containers. They are small enough to provide good random access and streaming
performance while being large enough to provide good compression. 1 MB containers are also small enough to
fit into the L2 cache of most modern CPUs.

Some simplified examples are provided below to fit data into 1 MB containers.
Unmapped short reads with bases, read names, recalibrated and original quality scores

We have 10,000 unmapped short reads (100bp) with read names, recalibrated and original quality scores. We
estimate 0.4 bits/base (read names) + 0.4 bits/base (bases) + 3 bits/base (recalibrated quality scores) + 3
bits/base (original quality scores) &~ 7 bits/base. Space estimate is 10000 x 100 x 7 bits ~ 0.9 MB. Data could
be stored in a single container.

Unmapped long reads with bases, read names and quality scores

We have 10,000 unmapped long reads (10kb) with read names and quality scores. We estimate: 0.4 bits/base
(bases) + 3 bits/base (original quality scores) ~ 3.5 bits/base. Space estimate is 10000 x 10000 x 3.5 bits =
42 MB. Data could be stored in 42 x 1 MB containers.

Mapped short reads with bases, pairing and mapping information

We have 250,000 mapped short reads (100bp) with bases, pairing and mapping information. We estimate the
compression to be 0.2 bits/base. Space estimate is 250 000 x 100 x 0.2 bits ~ 0.6 MB. Data could be stored in
a single container.

Embedded reference sequences

We have a reference sequence (10Mb). We estimate the compression to be 2 bits/base. Space estimate is
10000000 x 2 bits =~ 2.4MB. Data could be written into three containers: 1 MB + 1 MB + 0.4 MB.

37

15.2 CRAM History
Pre-CRAM: 2010

The primary concepts and ideas of CRAM stem from work at the European Bioinformatics Institute in 2010
and 2011, published in:

Markus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan Birney, Efficient storage of high
throughput DNA sequencing data using reference-based compression, Genome Res. 2011 21:
734-740; doi:10.1101 /gr.114819.110; pMID:21245279.

CRAM 0.x: 2011

Vadim Zalunin implemented the ideas in the paper, now named CRAM, in the Java CRAMtools package. This
included versions from 0.3 to 0.86'2.

CRAM 1.0: 2012

The first official launch of the CRAM specification, in the Java CRAMtools package!?
This was publicised at https://github.com/enasequence/cramtools.

CRAM 2.0: 2013

Reimplementing CRAM in C ' exposed a number of issues with the 1.0 specification and disparities between
the specification text and the Java implementation. CRAM 2.0 unified implementation with specification.

Other changes included:

e Support for multiple references per container, to permit storage of highly fragmented assemblies.

Soft-clips and inserted bases moved to their own separate data-series instead of sharing one.

Slice headers contain meta-data tracking the number of records and bases.

Corrected the BF (bam flag) data series to match the BAM specification.

Improved encoding of auxiliary tags.

CRAM 2.1: 2014

This is the first version to appear in HT'SJDK (version 1.127), ported from the Java CRAMtools package.
e EOF blocks are added in order to spot truncated files.

CRAM 3.0: 2014

Primarily this is an optimisation of size and speed.

e Inclusion of LZMA compression library.
e Inclusion of the custom rANS Order-0 and Order-1 entropy encoders.

e Checksums added to all file format structures to ensure data integrity.

2https://github.com/vadimzalunin/crammer/releases
13https://github.com/enasequence/cramtools
14Staden IO _Lib 1.13.0 and later HTSlib 0.2.0

38

http://dx.doi.org/doi:10.1101/gr.114819.110
https://github.com/enasequence/cramtools
https://github.com/vadimzalunin/crammer/releases
https://github.com/enasequence/cramtools

15.3 Contributors and Acknowledgements

Markus Fritz, Rasko Leinonen, Guy Cochrane and Ewan Birney (EBI): Initial ideas behind CRAM.

Vadim Zalunin (EBI): Initial JAVA implementation of CRAM and previous maintainer of CRAM speci-
fication.

James Bonfield (Sanger Institute): Initial C implementation of CRAM and current maintainer of CRAM
specification.

Joel Thibault (Broad Institute): previous maintainer of CRAM specification.

Chris Norman (Broad Institute): previous maintainer of CRAM specification and worked on the HTSJDK
implementation.

Robert Buels (UC Berkeley): First JavaScript implementation of CRAM
Michael Macias (St Jude Children’s Research Hospital): First Rust implementation of CRAM

Other specification contributors include: John Marshall, Rishi Nag, Kenta Sato, Artem Tarasov and Jason
Travis.

Plus a big thank you to everyone who has raised GitHub issues and/or helped us improve the specification
in other ways.

39

	Overview
	Data types
	Logical data types
	Writing bits to a bit stream
	Writing bytes to a byte stream

	Encodings
	Checksums
	CRC32
	CRC32 sum

	File structure
	File definition
	Container header structure
	CRAM header container

	Block structure
	Block content types
	Block content id
	CRAM header block
	Compression header block
	Slice header block
	Core data block
	External data blocks

	End of file container
	Record structure
	CRAM record
	CRAM positional data
	Read names (RN data series)
	Mate record
	Auxiliary tags
	Mapped reads
	Unmapped reads

	Reference sequences
	Indexing
	Encodings
	Introduction
	EXTERNAL: codec ID 1
	Huffman coding: codec ID 3
	Byte array coding
	Beta coding: codec ID 6
	Subexponential coding: codec ID 7
	Gamma coding: codec ID 9
	DEPRECATED: Golomb coding: codec ID 2
	DEPRECATED: Golomb-Rice coding: codec ID 8

	External compression methods
	Gzip
	Bzip2
	LZMA
	rANS codec
	rANS compressed data structure
	Frequency table
	rANS entropy encoding

	Appendix
	Choosing the container size
	CRAM History
	Contributors and Acknowledgements

