
CRAM format specification (version 2.1)

cram-dev@ebi.ac.uk

2 Feb 2023

The master version of this document can be found at https://github.com/samtools/hts-specs.
This printing is version 703ef9b from that repository, last modified on the date shown above.

license: Apache 2.0

1 Overview

This specification describes the CRAM 2.1 format.

CRAM has the following major objectives:

1. Significantly better lossless compression than BAM

2. Full compatibility with BAM

3. Effortless transition to CRAM from using BAM files

4. Support for controlled loss of BAM data

The first three objectives allow users to take immediate advantage of the CRAM format while offering a smooth
transition path from using BAM files. The fourth objective supports the exploration of different lossy compres-
sion strategies and provides a framework in which to effect these choices. Please note that the CRAM format
does not impose any rules about what data should or should not be preserved. Instead, CRAM supports a wide
range of lossless and lossy data preservation strategies enabling users to choose which data should be preserved.

Data in CRAM is stored either as CRAM records or using one of the general purpose compressors (gzip, bzip2).
CRAM records are compressed using a number of different encoding strategies. For example, bases are reference
compressed by encoding base differences rather than storing the bases themselves.1

2 Data types

CRAM specification uses logical data types and storage data types; logical data types are written as words (e.g.
int) while physical data types are written using single letters (e.g. i). The difference between the two is that
storage data types define how logical data types are stored in CRAM. Data in CRAM is stored either as as bits
or as bytes. Writing values as bits and bytes is described in detail below.

2.1 Logical data types

Byte
Signed byte (8 bits).

1Markus Hsi-Yang Fritz, Rasko Leinonen, Guy Cochrane, and Ewan Birney, Efficient storage of high throughput
DNA sequencing data using reference-based compression, Genome Res. 2011 21: 734–740; doi:10.1101/gr.114819.110;
pmid:21245279.

1

https://github.com/samtools/hts-specs
http://dx.doi.org/doi:10.1101/gr.114819.110

Integer
Signed 32-bit integer.

Long
Signed 64-bit integer.

Array
An array of any logical data type: <type>[]

2.2 Writing bits to a bit stream

A bit stream consists of a sequence of 1s and 0s. The bits are written most significant bit first where new bits
are stacked to the right and full bytes on the left are written out. In a bit stream the last byte will be incomplete
if less than 8 bits have been written to it. In this case the bits in the last byte are shifted to the left.

Example of writing to bit stream

Let’s consider the following example. The table below shows a sequence of write operations:

Operation order Buffer state before Written bits Buffer state after Issued bytes
1 0x0 1 0x1 -
2 0x1 0 0x2 -
3 0x2 11 0xB -
4 0xB 0000 0111 0x7 0xB0

After flushing the above bit stream the following bytes are written: 0xB0 0x70. Please note that the last byte
was 0x7 before shifting to the left and became 0x70 after that:

> echo "obase=16; ibase=2; 00000111" | bc
7

> echo "obase=16; ibase=2; 01110000" | bc
70

And the whole bit sequence:

> echo "obase=2; ibase=16; B070" | bc
1011000001110000

When reading the bits from the bit sequence it must be known that only 12 bits are meaningful and the bit
stream should not be read after that.

Note on writing to bit stream

When writing to a bit stream both the value and the number of bits in the value must be known. This is because
programming languages normally operate with bytes (8 bits) and to specify which bits are to be written requires
a bit-holder, for example an integer, and the number of bits in it. Equally, when reading a value from a bit
stream the number of bits must be known in advance. In case of prefix codes (e.g. Huffman) all possible bit
combinations are either known in advance or it is possible to calculate how many bits will follow based on the
first few bits. Alternatively, two codes can be combined, where the first contains the number of bits to read.

2.3 Writing bytes to a byte stream

The interpretation of byte stream is straightforward. CRAM uses little endianness for bytes when applicable
and defines the following storage data types:

Boolean (bool)
Boolean is written as 1-byte with 0x0 being ‘false’ and 0x1 being ‘true’.

Integer (int32)
Signed 32-bit integer, written as 4 bytes in little-endian byte order.

2

Long (int64)
Signed 64-bit integer, written as 8 bytes in little-endian byte order.

ITF-8 integer (itf8)
This is an alternative way to write an integer value. The idea is similar to UTF-8 encoding and therefore
this encoding is called ITF-8 (Integer Transformation Format - 8 bit).
The most significant bits of the first byte have special meaning and are called ‘prefix’. These are 0 to 4
true bits followed by a 0. The number of 1’s denote the number of bytes the follow. To accommodate 32
bits such representation requires 5 bytes with only 4 lower bits used in the last byte 5.

LTF-8 long or (ltf8)
See ITF-8 for more details. The only difference between ITF-8 and LTF-8 is the number of bytes used to
encode a single value. To do so 64 bits are required and this can be done with 9 byte at most with the
first byte consisting of just 1s or 0xFF value.

Array ([])
Array length is written first as integer (itf8), followed by the elements of the array.

Encoding

Encoding is a data type that specifies how data series have been compressed. Encodings are defined as encod-
ing<type> where the type is a logical data type as opposed to a storage data type.

An encoding is written as follows. The first integer (itf8) denotes the codec id and the second integer (itf8) the
number of bytes in the following encoding-specific values.

Subexponential encoding example:

Value Type Name
0x7 itf8 codec id
0x2 itf8 number of bytes to follow
0x0 itf8 offset
0x1 itf8 K parameter

The first byte “0x7” is the codec id.

The second 4 bytes “0x0 0x0 0x0 0xD” denote the length of the bytes to follow (13).

The subexponential encoding has 3 parameters: integer (itf8) K, int (itf8) offset and boolean (bool) unary bit:

K = 0x1 = 1

offset = 0x0 = 0

Map

A map is a collection of keys and associated values. A map with N keys is written as follows:

size in bytes N key 1 value 1 key ... value ... key N value N

Both the size in bytes and the number of keys are written as integer (itf8). Keys and values are written according
to their data types and are specific to each map.

2.4 Strings

Strings are represented as byte arrays using UTF-8 format. Read names, reference sequence names and tag
values with type ‘Z’ are stored as UTF-8.

3 Encodings

Encoding is a data structure that captures information about compression details of a data series that are
required to uncompress it. This could be a set of constants required to initialize a specific decompression

3

algorithm or statistical properties of a data series or, in case of data series being stored in an external block,
the block content id.

Encoding notation is defined as the keyword ‘encoding’ followed by its data type in angular brackets, for example
‘encoding<byte>’ stands for an encoding that operates on a data series of data type ‘byte’.

Encodings may have parameters of different data types, for example the external encoding has only one param-
eter, integer id of the external block. The following encodings are defined:

Codec ID Parameters Comment
NULL 0 none series not preserved
EXTERNAL 1 int block content id the block content identifier used to

associate external data blocks with
data series

GOLOMB 2 int offset, int M Golomb coding
HUFFMAN_INT 3 int array, int array coding with int values
BYTE_ARRAY_LEN 4 encoding<int> array length,

encoding<byte> bytes
coding of byte arrays with array
length

BYTE_ARRAY_STOP 5 byte stop, int external block
content id

coding of byte arrays with a stop
value

BETA 6 int offset, int number of bits binary coding
SUBEXP 7 int offset, int K subexponential coding
GOLOMB_RICE 8 int offset, int log2m Golomb-Rice coding
GAMMA 9 int offset Elias gamma coding

See the later Encodings sections for more detailed descriptions of all the above coding algorithms and their
parameters.

4 File structure

The overall CRAM file structure is described in this section. Please refer to other sections of this document for
more detailed information.

A CRAM file starts with a fixed length file definition followed by one or more containers. The BAM header is
stored in the first container.

Pic.1 CRAM file starts with a file definition followed by the BAM header and other containers.

Containers consist of one or more blocks. By convention, the BAM header is stored in the first container within
a single block. This is known as the BAM header block.

Pic.2 The BAM header is stored in the first container.

Each container starts with a container header followed by one or more blocks. Each block starts with a block
header. All data in CRAM is stored within blocks after the block header.

4

Pic.3 Container and block structure. All data in CRAM files is stored in blocks.

The first block in each container is the compression header block:

Pic.4 Compression header is the first block in the container.

The blocks after the compression header are organised logically into slices. One slice may contain, for example,
a contiguous region of alignment data. Slices begin with a slice header block and are followed by one or more
data blocks:

Pic.5 Containers are logically organised into slices.

Data blocks are divided into core and external data blocks. Each slice must have at least one core data block
immediately after the slice header block. The core data block may be followed by one or more external data
blocks.

5

Pic.5 Data blocks are divided into core and external data blocks.

5 File definition

Each CRAM file starts with a fixed length (26 bytes) definition with the following fields:

Data type Name Value
byte[4] format magic number CRAM (0x43 0x52 0x41 0x4d)
unsigned byte major format number 2 (0x2)
unsigned byte minor format number 1 (0x1)
byte[20] file id CRAM file identifier (e.g. file name or SHA1 checksum)

Valid CRAM major.minor version numbers are as follows:

1.0 The original public CRAM release.

2.0 The first CRAM release implemented in both Java and C; tidied up implementation vs specification
differences in 1.0.

2.1 Gained end of file markers; compatible with 2.0.

3.0 Additional compression methods; header and data checksums; improvements for unsorted data.

6 Container structure

The file definition is followed by one or more containers with the following header structure where the container
content is stored in the ‘blocks’ field:
Data type Name Value
int32 length byte size of the container data (blocks)
itf8 reference sequence id reference sequence identifier or

-1 for unmapped reads
-2 for multiple reference sequences

itf8 starting position on the
reference

the alignment start position or
0 for unmapped reads

itf8 alignment span the length of the alignment or
0 for unmapped reads

itf8 number of records number of records in the container
itf8 record counter 1-based sequential index of records in the file/stream.
ltf8 bases number of read bases
itf8 number of blocks the number of blocks
itf8[] landmarks Each integer value of this array is a byte offset into the

blocks byte array. Landmarks are used for random access
indexing.

byte[] blocks The blocks contained within the container.

6

6.1 CRAM header in the first container

The first container in the CRAM file contains the BAM header in an uncompressed block. BAM header is
terminated with \0 byte and any extra bytes in the block can be used to expand the BAM header. For example
when updating @SQ records additional space may be required for the BAM header. It is recommended to
reserve 50% more space in the CRAM header block than it is required by the BAM header.

7 Block structure

Containers consist of one or more blocks. Block compression is applied independently and in addition to any
encodings used to compress data within the block. The block have the following header structure with the data
stored in the ‘block data’ field:
Data type Name Value
byte method the block compression method:

0: raw (none)*
1: gzip
2: bzip2

byte block content type id the block content type identifier
itf8 block content id the block content identifier used to associate external data

blocks with data series
itf8 size in bytes* size of the block data after applying block compression
itf8 raw size in bytes* size of the block data before applying block compression
byte[] block data the data stored in the block:

• bit stream of CRAM records (core data block)
• byte stream (external data block)
• additional fields (header blocks)

* Note on raw method: both compressed and raw sizes must be set to the same value.

7.1 Block content types

CRAM has the following block content types:

Block content type Block
content
type id

Name Contents

FILE_HEADER 0 BAM header block BAM header
COMPRESSION_HEADER 1 Compression header block See specific section
MAPPED_SLICE_HEADER 2 Slice header block See specific section

3 reserved
EXTERNAL_DATA 4 external data block data produced by

external encodings
CORE_DATA 5 core data block bit stream of all

encodings except for
external

7.2 Block content id

Block content id is used to distinguish between external blocks in the same slice. Each external encoding has
an id parameter which must be one of the external block content ids. For external blocks the content id is a
positive integer. For all other blocks content id should be 0. Consequently, all external encodings must not use
content id less than 1.

7

Data blocks

Data is stored in data blocks. There are two types of data blocks: core data blocks and external data blocks.The
difference between core and external data blocks is that core data blocks consist of data series that are compressed
using bit encodings while the external data blocks are byte compressed. One core data block and any number
of external data blocks are associated with each slice.

Writing to and reading from core and external data blocks is organised through CRAM records. Each data
series is associated with an encoding. In case of external encoding the block content id is used to identify the
block where the data series is stored. Please note that external blocks can have multiple data series associated
with them; in this case the values from these data series will be interleaved.

7.3 BAM header block

The BAM header is stored in a single block within the first container.

The following constraints apply to the BAM header:

• The SQ:MD5 checksum is required unless the reference sequence has been embedded into the file.

• At least one RG record is required.

• The HD:SO sort order is always POS.

7.4 Compression header block

The compression header block consists of 3 parts: preservation map, data series encoding map and tag encoding
map.

Preservation map

The preservation map contains information about which data was preserved in the CRAM file. It is stored as
a map with byte[2] keys:

Key Value data type Name Value
RN bool read names included true if read names are preserved for all reads
AP bool AP data series delta true if AP data series is delta, false otherwise
RR bool reference required true if reference sequence is required to restore

the data completely
SM byte[5] substitution matrix substitution matrix
TD byte[] tag ids dictionary a list of lists of tag ids, see tag encoding section

Data series encodings

Each data series has an encoding. These encoding are stored in a map with byte[2] keys:

8

Key Value data type Name Value
BF encoding<int> bit flags see separate section
AP encoding<int> in-seq positions 0-based alignment start delta from previous

record *
FP encoding<int> in-read positions positions of the read features
RL encoding<int> read lengths read lengths
DL encoding<int> deletion lengths base-pair deletion lengths
NF encoding<int> distance to next

fragment
number of records to the next fragment*

BA encoding<byte> bases bases
QS encoding<byte> quality scores quality scores
FC encoding<byte> read features codes see separate section
FN encoding<int> number of read

features
number of read features in each record

BS encoding<byte> base substitution
codes

base substitution codes

IN encoding<byte[]> insertion inserted bases
RG encoding<int> read groups read groups. Special value ‘-1’ stands for no

group.
MQ encoding<int> mapping qualities mapping quality scores
TL encoding<int> tag ids list of tag ids, see tag encoding section
RN encoding<byte[]> read names read names
NS encoding<int> next fragment

reference sequence id
reference sequence ids for the next fragment

NP encoding<int> next mate alignment
start

alignment positions for the next fragment

TS encoding<int> template size template sizes
MF encoding<int> next mate bit flags see specific section
CF encoding<int> compression bit flags see specific section
TM encoding<int> test mark a prefix expected before every record, for

debugging purposes.
RI encoding<int> reference id record reference id from the BAM file header
RS encoding<int> reference skip length number of skipped bases for the ‘N’ read feature
PD encoding<int> padding number of padded bases
HC encoding<int> hard clip number of hard clipped bases
SC encoding<byte[]> soft clip soft clipped bases

* The data series is reset for each slice.

Encoding tags

The TL (tag list) data series represents combined information about the number of tags in a record and their
ids.

Let Li = {Ti0, Ti1, . . . , Tix} be sorted list of all tag ids for a record Ri, where i is the sequential record index and
Tij denotes j-th tag id in the record. We recommend alphabetical sort order. The list of unique Li is assigned
sequential integer numbers starting with 0. These integer numbers represent the TL data series. The sorted list
of unique Li is stored as the TD value in the preservation map. Using TD, an integer from the TL data series
can be mapped back into a list of tag ids.

The TD is written as byte array consisting of Li values separated with \0. Each Li value is written as a sequence
of 3 bytes: tag id followed by tag value type. For example AMiOQZ\0OQZ\0, where the TD consists of just
two values: integer 0 for tags {AM:i,OQ:Z} and 1 for tag {OQ:Z}.

Encoding tag values

The encodings used for different tags are stored in a map. The map has integer keys composed of the two letter
tag abbreviation followed by the tag type as defined in the SAM specification, for example ‘OQZ’ for ‘OQ:Z’.

9

The three bytes form a big endian integer and are written as ITF8. For example, 3-byte representation of OQ:Z
is {0x4F, 0x51, 0x5A} and these bytes are interpreted as the integer 0x004F515A. The integer is finally written
as ITF8.
Key Value data type Name Value
TAG NAME 1:TAG TYPE 1 encoding<byte[]> read tag 1 tag values (names and types are

available in the data series code)
...
TAG NAME N:TAG TYPE N encoding<byte[]> read tag N ...

Note that tag values are encoded as array of bytes. The routines to convert tag values into byte array and back
are the same as in BAM with the exception of value type being captured in the tag key rather in the value.

7.5 Slice header block

The slice header block is never compressed (block method=raw). For reference mapped reads the slice header
also defines the reference sequence context of the data blocks associated with the slice. Mapped and unmapped
reads can be stored within the same slice similarly to BAM file. Slices with unsorted reads must not contain
any other types of reads.

The slice header block contains the following fields.

Data type Name Value
itf8 reference sequence id reference sequence identifier or -1 for

unmapped or unsorted reads
itf8 alignment start the alignment start position or -1 for

unmapped or unsorted reads
itf8 alignment span the length of the alignment or 0 for

unmapped or unsorted reads
itf8 number of records the number of records in the slice
ltf8 record counter 1-based sequential index of records in the

file/stream
itf8 number of blocks the number of blocks in the slice
itf8[] block content ids block content ids of the blocks in the slice
itf8 embedded reference bases block content id block content id for the embedded reference

sequence bases or -1 for none
byte[16] reference md5 MD5 checksum of the reference bases within

the slice boundaries or 16 \0 bytes for
unmapped or unsorted reads

7.6 Core data block

A core data block is a bit stream (most significant bit first) consisting of one or more CRAM records. Please
note that one byte could hold more then one CRAM record as a minimal CRAM record could be just a few bits
long. The core data block has the following fields:

Data type Name Value
bit[] CRAM record 1 The first CRAM record
...
bit[] CRAM record N The Nth CRAM record

7.7 External data block

Relationship between core data block and external data blocks is shown in the following picture:

10

Pic.3 Relationship between core data block and external data blocks.

The picture shows how a CRAM record (on the left) is partially written to core data block while the other fields
are stored in two external data blocks. The specific encodings are presented only for demonstration purposes,
the main point here is to distinguish between bit encodings whose output is always stored in core data block
and the external encoding which simply stored the bytes into external data blocks.

8 End of file marker

A special container is used to mark the end of a file or stream. It is optional in version preceding 2.1 but
required in later versions. The idea is to provide an easy and a quick way to detect that a CRAM file or stream
is complete. The marker is basically an empty container with ref seq id set to -1 (unaligned) and alignment
start set to 4542278.

Here is a complete content of the EOF container explained in detail:

11

hex bytes data type decimal value field name
Container header
0b 00 00 00 integer 11 size of blocks data
ff ff ff ff ff itf8 -1 ref seq id
e0 45 4f 46 itf8 4542278 alignment start
00 itf8 0 alignment span
00 itf8 0 nof records
00 itf8 0 global record counter
00 itf8 0 bases
01 itf8 1 block count
00 array 0 landmarks
Compression header block
00 byte 0 (RAW) compression method
01 byte 1 (COMPRESSION_HEADER) block content type
00 itf8 0 block content id
06 itf8 6 compressed size
06 itf8 6 uncompressed size
Compression header
01 itf8 1 preservation map byte size
00 itf8 0 preservation map size
01 itf8 1 encoding map byte size
00 itf8 0 encoding map size
01 itf8 1 tag encoding byte size
00 itf8 0 tag encoding map size

When compiled together the EOF marker is exactly 30 bytes long and in hex representation is:

0b 00 00 00 ff ff ff ff ff e0 45 4f 46 00 00 00 00 01 00 00 01 00 06 06 01 00 01 00 01 00

9 Record structure

CRAM record is based on the SAM record but has additional features allowing for more efficient data storage.
In contrast to BAM record CRAM record uses bits as well as bytes for data storage. This way, for example,
various coding techniques which output variable length binary codes can be used directly in CRAM. On the
other hand, data series that do not require binary coding can be stored separately in external blocks with some
other compression applied to them independently.

9.1 CRAM record

Both mapped and unmapped reads start with the following fields. Please note that the data series type refers
to the logical data type and the data series name corresponds to the data series encoding map.

12

Data series
type

Data series
name

Field Description

1 int BF CRAM bit flags see CRAM record bit flags
2 int CF compression bit

flags
see compression bit flags

3 int RI ref id reference sequence id, not used for
single reference slices, reserved for
future multiref slices.

4 int RL read length the length of the read
5 int AP alignment start the alignment start position *1
6 int RG read group the read group identifier
7 byte QS quality scores quality scores are stored depending on

the value of the ‘mapped QS included’
field

8 byte[] RN read name the read names (if preserved)
9 *2 *2 mate record *2 (if not the last record)
10 int TL tag ids tag ids *3
11 byte[] - tag values tag values *3

*1 The AP data series is delta encoded for reads mapped to a single reference slice and normal integer value in
all other cases.

*2 See mate record section.

*3 See tag encoding section.

The CRAM record structure for mapped reads has the following additional fields:

Data series
type

Data series
name

Field Description

1 *1 *1 read feature
records

*1

2 byte MQ mapping quality read mapping quality

*1 See read feature record specification below.

The CRAM record structure for unmapped reads has the following additional fields:

Data series type Data series
name

Field Description

1 byte[read length] BA bases the read bases

9.2 Read bases

CRAM format supports ACGTN bases only. All non-ACGTN read bases must be replaced with N (unknown)
base. In case of mismatching non-ACGTN read base and non-ACGTN reference base a ReadBase read feature
should be used to capture the fact that the read base should be restored as N base.

9.3 CRAM record bit flags (BF data series)

The following flags are defined for each CRAM read record:

13

Bit flag Comment Description
0x1 ! 0x40 && ! 0x80 template having multiple

segments in sequencing
0x2 each segment properly aligned

according to the aligner
0x4 segment unmapped
0x8 calculated* or stored in the

mate’s info
next segment in the template
unmapped

0x10 SEQ being reverse
complemented

0x20 calculated* or stored in the
mate’s info

SEQ of the next segment in the
template being reverse
complemented

0x40 the first segment in the template
0x80 the last segment in the template
0x100 secondary alignment
0x200 not passing quality controls
0x400 PCR or optical duplicate

* For segments within the same slice.

9.4 Read feature records

Read features are used to store read details that are expressed using read coordinates (e.g. base differences
respective to the reference sequence). The read feature records start with the number of read features followed
by the read features themselves:

Data series
type

Data series
name

Field Description

1 int FN number of read
features

the number of read features

2 *1 int FP in-read-position position of the read feature
3 *1 byte FC read feature code *2
4 *1 *2 *2 read feature data *2

*1 Repeated for each read feature.

*2 See read feature codes below.

Read feature codes

The following codes are used to distinguish variations in read coordinates:

14

Feature code Id Data series
type

Data series
name

Description

Read base B (0x42) byte,byte BA,QS A base and associated quality
score

Substitution X (0x58) byte BS base substitution codes, SAM
operators X, M and =

Insertion I (0x49) byte[] IN inserted bases, SAM operator
I

Deletion D (0x44) int DL number of deleted bases,
SAM operator D

Insert base i (0x69) byte BA single inserted base, SAM
operator I

Quality score Q (0x51) byte QS single quality score
Reference skip N (0x4E) int RS number of skipped bases,

SAM operator N
Soft clip S byte[] SC soft clipped bases, SAM

operator S
Padding P int PD number of padded bases,

SAM operator P
Hard clip H int HC number of hard clipped bases,

SAM operator H

Base substitution codes (BS data series)

A base substitution is defined as a change from one nucleotide base (reference base) to another (read base)
including N as an unknown or missing base. There are 5 possible bases ACGTN, 4 possible substitutions for
each base and 20 substitutions in total. Substitutions for the same reference base are assigned integer codes
from 0 to 3 inclusive. To restore a base one would need to know its substitution code and the reference base.

A base substitution matrix assigns integer codes to all possible substitutions.

Substitution matrix is written as follows. Substitutions for a given reference base are sorted by their frequencies
in descending order then assigned numbers from 0 to 3. Same-frequency ties are broken using alphabetical
order. For example, let us assume the following substitution frequencies for base A:

AC: 15%

AG: 25%

AT: 55%

AN: 5%

Then the substitution codes are:

AC: 2

AG: 1

AT: 0

AN: 3

and they are written as a single byte, 10 01 00 11 = 147 decimal or 0x93 in this case. The whole substitution
matrix is written as 5 bytes, one for each reference base in the alphabetical order: A, C, G, T and N.

Note: the last two bits of each substitution code are redundant but still required to simplify the reading.

9.5 Mate record

There are two ways in which mate information can be preserved in CRAM: number of records downstream
(distance) to the next fragment in the template and a special mate record if the next fragment is not in the
current slice. Combination of the two approaches allows to fully restore BAM level mate information and
efficiently store it in the CRAM file.

15

For mates within the slice only the distance is captured:

Data series
type

Data series name Description

1 int NF the number of records to the next fragment

If the next fragment is not found within the horizon then the following structure is included into the CRAM
record:

Data series
type

Data series name Description

1 byte MF next mate bit flags, see table below
2 byte[] RN the read name
3 int NS mate reference sequence identifier
4 int NP mate alignment start position
5 int TS the size of the template (insert size)

Next mate bit flags (MF data series)

The next mate bit flags expressed as an integer represent the MF data series. The following bit flags are defined:

Bit flag Name Description
0x1 mate negative strand bit the bit is set if the mate is on the negative strand
0x2 mate unmapped bit the bit is set if the mate is unmapped

Read names (RN data series)

Read names can be preserved in the CRAM format. However, it is anticipated that in the majority of cases
original read names will not be preserved and sequential integer numbers will be used as read names. Read
names may also be used to associate fragments into templates when the fragments are too far apart to be
referenced by the number of CRAM records. In this case the read names are not required to be the same as
the original ones. Their only two requirements are:

• read name must be the same for all fragments of the same template

• read name of a template must be unique within a file

9.6 Compression bit flags (CF data series)

The compression bit flags expressed as an integer represent the CF data series. The following compression flags
are defined for each CRAM read record:
Bit flag Name Description
0x1 quality scores stored as array quality scores can be stored as read features or as an

array similar to read bases.
0x2 detached the next segment is out of horizon
0x4 has mate downstream tells if the next segment should be expected further in

the stream

10 Reference sequences

CRAM format is natively based upon usage of reference sequences even though in some cases they are not
required. In contrast to BAM format CRAM format has strict rules about reference sequences.

1. M5 (sequence MD5 checksum) field of @SQ sequence record in the BAM header is required and UR (URI
for the sequence fasta optionally gzipped file) field is strongly advised. The rule for calculating MD5 is
to remove any non-base symbols (like \n, sequence name or length and spaces) and upper case the rest.
Here are some examples:

16

> samtools faidx human_g1k_v37.fasta 1 | grep -v ’^>’ | tr -d ’\n’ | tr a-z A-Z | md5sum
-
1b22b98cdeb4a9304cb5d48026a85128 -

> samtools faidx human_g1k_v37.fasta 1:10-20 |grep -v ’^>’ |tr -d ’\n’ |tr a-z A-Z |md5sum
-
0f2a4865e3952676ffad2c3671f14057 -

Please note that the latter calculates the checksum for 11 bases from position 10 (inclusive) to 20 (inclusive)
and the bases are counted 1-based, so the first base position is 1.

2. All CRAM reader implementations are expected to check for reference MD5 checksums and report any
missing or mismatching entries. Consequently, all writer implementations are expected to ensure that all
checksums are injected or checked during compression time.

3. In some cases reads may be mapped beyond the reference sequence. All out of range reference bases are
all assumed to be ‘N’.

4. MD5 checksum bytes in slice header should be ignored for unmapped or multiref slices.

11 Indexing

General notes

Please note that CRAM indexing is external to the file format itself and may change independently of the file
format specification in the future. For example, a new type of index files may appear.

Individual records are not indexed in CRAM files, slices should be used instead as a unit of random access.
Another important difference between CRAM and BAM indexing is that CRAM container header and com-
pression header block (first block in container) must always be read before decoding a slice. Therefore two read
operations are required for random access in CRAM.

Indexing a CRAM file is deemed to be a lightweight operation because it does not require any CRAM records
to be read. All indexing information can be obtained from container headers, namely sequence id, alignment
start and span, container start byte offset and slice byte offset inside the container.

CRAM index

A CRAM index is a gzipped tab delimited file containing the following columns:

1. Sequence id

2. Alignment start

3. Alignment span

4. Container start byte offset in the file

5. Slice start byte offset in the container data (‘blocks’)

6. Slice bytes

Each line represents a slice in the CRAM file. Please note that all slices must be listed in index file.

BAM index

BAM indexes are supported by using 4-byte integer pointers called landmarks that are stored in container
header. BAM index pointer is a 64-bit value with 48 bits reserved for the BAM block start position and 16 bits
reserved for the in-block offset. When used to index CRAM files, the first 48 bits are used to store the CRAM
container start position and the last 16 bits are used to store the index of the landmark in the landmark array
stored in container header. The landmark index can be used to access the appropriate slice.

17

The above indexing scheme treats CRAM slices as individual records in BAM file. This allows to apply BAM
indexing to CRAM files, however it introduces some overhead in seeking specific alignment start because all
preceding records in the slice must be read and discarded.

12 Appendix

12.1 External encoding

External encoding operates on bytes only. Therefore any data series must be translated into bytes before sending
data into an external block. The following agreements are defined.

Integer values are written as ITF8, which then can be translated into an array of bytes.

Strings, like read name, are translated into bytes according to UTF8 rules. In most cases these should coincide
with ASCII, making the translation trivial.

12.2 Codings

Introduction

The basic idea for codings is to efficiently represent some values in binary format. This can be achieved in a
number of ways that most frequently involve some knowledge about the nature of the values being encoded, for
example, distribution statistics. The methods for choosing the best encoding and determining its parameters
are very diverse and are not part of the CRAM format specification, which only describes how the information
needed to decode the values should be stored.

Offset

Most of the codings listed below encode positive integer numbers. An integer offset value is used to allow any
integer numbers and not just positive ones to be encoded. It can also be used for monotonically decreasing
distributions with the maximum not equal to zero. For example, given offset is 10 and the value to be encoded
is 1, the actually encoded value would be offset+value=11. Then when decoding, the offset would be subtracted
from the decoded value.

Beta coding

Definition

Beta coding is a most common way to represent numbers in binary notation.

Examples

Number Codeword
0 0
1 1
2 10
4 100

Parameters

CRAM format defines the following parameters of beta coding:

Data type Name Comment
itf8 offset offset is added to each value
itf8 length the number of bits used

18

Gamma coding

Definition

Elias gamma code is a prefix encoding of positive integers. This is a combination of unary coding and beta
coding. The first is used to capture the number of bits required for beta coding to capture the value.

Encoding

1. Write it in binary.

2. Subtract 1 from the number of bits written in step 1 and prepend that many zeros.

3. An equivalent way to express the same process:

4. Separate the integer into the highest power of 2 it contains (2N) and the remaining N binary digits of
the integer.

5. Encode N in unary; that is, as N zeroes followed by a one.

6. Append the remaining N binary digits to this representation of N .

Decoding

1. Read and count 0s from the stream until you reach the first 1. Call this count of zeroes N .

2. Considering the one that was reached to be the first digit of the integer, with a value of 2N , read the
remaining N digits of the integer.

Examples

Value Codeword
1 1
2 010
3 011
4 00100

Parameters

Data type Name Comment
itf8 offset offset is added to each value

Golomb coding

Definition

Golomb encoding is a prefix encoding optimal for representation of random positive numbers following geometric
distribution.

1. Fix the parameter M to an integer value.

2. For N , the number to be encoded, find

(a) quotient q = ⌊N/M⌋
(b) remainder r = N mod M

3. Generate Codeword

(a) The Code format : <Quotient Code><Remainder Code>, where

19

(b) Quotient Code (in unary coding)

i. Write a q-length string of 1 bits
ii. Write a 0 bit

(c) Remainder Code (in truncated binary encoding)

i. If M is power of 2, code remainder as binary format. So log2(M) bits are needed. (Rice code)
ii. If M is not a power of 2, set b = ⌈log2(M)⌉

A. If r < 2b −M code r as plain binary using b− 1 bits.
B. If r ≥ 2b code the number r + 2b in plain binary representation using b bits.

Examples

Number Codeword, M=10
0 0000
4 0100
10 10000
42 11110010

Parameters

Golomb coding takes the following parameters:

Data type Name Comment
itf8 offset offset is added to each value
itf8 M the golomb parameter (number

of bins)

Golomb-Rice coding

Golomb-Rice coding is a special case of Golomb coding when the M parameter is a power of 2. The reason for
this coding is that the division operations in Golomb coding can be replaced with bit shift operators.

Subexponential coding

Definition

Subexponential coding is parametrized by a non-nengative integer k. The main feature of the subexponential
code is its length. For integers n < 2k+1 the code length increases linearly with n, but for larger n it increases
logarithmically.

Encoding

1. Determine the group index i using the following rules:

(a) if n < 2k, then i = 0.

(b) if n ≥ 2k , then determine i such that 2i+k−1 ≤ n < 2i+k

2. Form the prefix of i 1s.

3. Insert the separator 0.

4. Form the tail: express the value of (n − 2i+k−1) as a (i + k − 1)-bit binary number if i > 0 and n as a
k-bit binary number otherwise.

20

Decoding

1. Let i be the number of leading 1s (prefix) in the codeword.

2. Form a run of 0s of length

(a) 0, if i = 0

(b) 2i+k−1, otherwise

3. Skip the next 0 (separator).

4. Compute the length of the tail, ctail as

(a) k, if i = 0

(b) k + i− 1, if i ≥ 1

5. The next ctail bits are the tail. Form a run of 0s of length represented by the tail.

6. Append 1 to the run of 0s.

7. Go to step 1 to process the next codeword.

Examples

Number Codeword, k=0 Codeword, k=1 Codeword, k=2
0 0 00 000
1 10 01 001
2 1100 100 010
3 1101 101 011
4 111000 11000 1000
5 111001 11001 1001
6 111010 11010 1010
7 111011 11011 1011
8 11110000 1110000 110000
9 11110001 1110001 110001
10 11110010 1110010 110010

Parameters

Data type Name Comment
itf8 offset offset is added to each value
itf8 k the order of the subexponential coding

Huffman coding

CRAM uses canonical huffman coding, which requires only bit-lengths of codewords to restore data. The
canonical huffman code follows two additional rules: the alphabet has a natural sort order and codewords are
sorted by their numerical values. Given these rules and a codebook containing bit-lengths for each value in the
alphabet the codewords can be easily restored.

Important note: for alphabets with only one value there is no output bits at all.

Code computation

• Sort the alphabet ascending using bit-lengths and then using numerical order of the values.

• The first symbol in the list gets assigned a codeword which is the same length as the symbol’s original codeword
but all zeros. This will often be a single zero (’0’).

21

• Each subsequent symbol is assigned the next binary number in sequence, ensuring that following codes are
always higher in value.

• When you reach a longer codeword, then after incrementing, append zeros until the length of the new codeword
is equal to the length of the old codeword.

Parameters

Data type Name Comment
itf8[] alphabet list of all encoded values
itf8[] bit-lengths array of bit-lengths for each symbol in the alphabet

Byte array coding

Often there is a need to encode an array of bytes. This can be optimized if the length of the encoded arrays is
known. For such cases BYTE_ARRAY_LEN and BYTE_ARRAY_STOP codings can be used.

BYTE_ARRAY_LEN

Byte arrays are captured length-first, meaning that the length of every array is written using an additional
encoding. For example this could be a golomb encoding. The parameter for BYTE_ARRAY_LEN are listed
below:
Data type Name Comment
encoding<int> lengths encoding an encoding describing how the arrays lengths are

captured
encoding<byte> values encoding an encoding describing how the values are captured

BYTE_ARRAY_STOP

Byte arrays are captured as a sequence of bytes terminated by a special stop byteFor example this could be a
golomb encoding. The parameter for BYTE_ARRAY_STOP are listed below:

Data type Name Comment
byte stop byte a special byte treated as a delimiter
itf8 external id id of an external block containing the byte stream

12.3 Choosing the container size

CRAM format does not constrain the size of the containers. However, the following should be considered when
deciding the container size:

• Data can be compressed better by using larger containers

• Random access performance is better for smaller containers

• Streaming is more convenient for small containers

• Applications typically buffer containers into memory

We recommend 1MB containers. They are small enough to provide good random access and streaming perfor-
mance while being large enough to provide good compression. 1MB containers are also small enough to fit into
the L2 cache of most modern CPUs.

Some simplified examples are provided below to fit data into 1MB containers.

Unmapped short reads with bases, read names, recalibrated and original quality scores

We have 10,000 unmapped short reads (100bp) with read names, recalibrated and original quality scores. We
estimate 0.4 bits/base (read names) + 0.4 bits/base (bases) + 3 bits/base (recalibrated quality scores) + 3
bits/base (original quality scores) =~ 7 bits/base. Space estimate is (10,000 * 100 * 7) / 8 / 1024 / 1024 =~
0.9 MB. Data could be stored in a single container.

22

Unmapped long reads with bases, read names and quality scores

We have 10,000 unmapped long reads (10kb) with read names and quality scores. We estimate: 0.4 bits/base
(bases) + 3 bits/base (original quality scores) =~ 3.5 bits/base. Space estimate is (10,000 * 10,000 * 3.5) / 8 /
1024 / 1024 =~ 42 MB. Data could be stored in 42 x 1MB containers.

Mapped short reads with bases, pairing and mapping information

We have 250,000 mapped short reads (100bp) with bases, pairing and mapping information. We estimate the
compression to be 0.2 bits/base. Space estimate is (250,000 * 100 * 0.2) / 8 / 1024 / 1024 =~ 0.6 MB. Data
could be stored in a single container.

Embedded reference sequences

We have a reference sequence (10Mb). We estimate the compression to be 2 bits/base. Space estimate is
(10000000 * 2 / 8 / 1024 / 1024) =~ 2.4MB. Data could be written into three containers: 1MB + 1MB +
0.4MB.

23

	Overview
	Data types
	Logical data types
	Writing bits to a bit stream
	Writing bytes to a byte stream
	Strings

	Encodings
	File structure
	File definition
	Container structure
	CRAM header in the first container

	Block structure
	Block content types
	Block content id
	BAM header block
	Compression header block
	Slice header block
	Core data block
	External data block

	End of file marker
	Record structure
	CRAM record
	Read bases
	CRAM record bit flags (BF data series)
	Read feature records
	Mate record
	Compression bit flags (CF data series)

	Reference sequences
	Indexing
	Appendix
	External encoding
	Codings
	Choosing the container size

